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Abstract

We present a credit-based matching mechanism for dynamic
barter markets—and kidney exchange in particular—that is
both strategy proof and efficient, that is, it guarantees truthful
disclosure of donor-patient pairs from the transplant centers
and results in the maximum global matching. Furthermore,
the mechanism is individually rational in the sense that, in the
long run, it guarantees each transplant center more matches
than the center could have achieved alone. The mechanism
does not require assumptions about the underlying distribu-
tion of compatibility graphs—a nuance that has previously
produced conflicting results in other aspects of theoretical
kidney exchange. Our results apply not only to matching via
2-cycles: the matchings can also include cycles of any length
and altruist-initiated chains, which is important at least in kid-
ney exchanges. The mechanism can also be adjusted to guar-
antee immediate individual rationality at the expense of eco-
nomic efficiency, while preserving strategy proofness via the
credits. This circumvents a well-known impossibility result
in static kidney exchange concerning the existence of an in-
dividually rational, strategy-proof, and maximal mechanism.
We show empirically that the mechanism results in significant
gains on data from a national kidney exchange that includes
59% of all US transplant centers.

Introduction

In the United States alone, over 3.8 million people—roughly
1.6% of the population—have kidney disease.! For many,
kidney disease will progress to outright kidney failure—and
with it the need for a kidney transplant. Transplant organs
can be sourced from cadavers or willing living donors. How-
ever, there is a severe supply and demand mismatch with
donor organs; in 2013, 36,395 people were added to the US
national kidney waiting list, while only 16,462 left due to
receiving a living or deceased donor kidney.? Furthermore,
roughly half of the over 100,000 candidates on the US list
have been waiting for a kidney for more than two years.
Kidney exchange aims to reduce the transplant organ
supply-demand imbalance by making it easier to match will-
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"The 2012 US National Health Interview Survey (Blackwell,
Lucas, and Clarke 2014) counts patients with “weak or failing kid-
neys” (see their Tables 7 and 8 for methodology details).
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ing donors to needy patients. A person in need of a kid-
ney may have one or more healthy donors with two healthy
kidneys who are willing but unable to donate a kidney to
that person, typically due to a medical incompatibility like
a blood or tissue type mismatch. These incompatible donor-
patient pairs can exchange donors with other pairs, through
cycles or chains of exchanges, in such a way that each in-
volved pair’s donor gives to a (medically compatible) patient
of another pair. Recommending a “good” set of swaps is thus
the basic kidney exchange problem.

In recent years, numerous multi-transplant center kidney
exchanges have been fielded around the world, where donor-
patient pairs from different transplant centers can switch
donors. Multi-center kidney exchange programs are run
through clearinghouses that recommend a matching from the
full set of donor-patient pairs.

Transplant centers have different incentives than patients
and donors. Performing an organ transplant surgery is typ-
ically very profitable to a center. Thus, centers may have
incentive to only reveal some subset of their donor-patient
pairs to the clearinghouse, and match other pairs internally at
their center.> Such strategic behavior is rampant: today most
transplant centers not only hide their easy-to-match pairs,
but all their internally matchable pairs (Stewart et al. 2013).
It has also been shown to reduce the overall efficiency of
kidney exchange in theory (Ashlagi and Roth 2014).

While most prior work on mechanism design for kidney
exchange has focused on static models, in this paper we con-
sider a more realistic multi-period dynamic model. For this
dynamic model, we study how to construct a mechanism that
makes it a dominant strategy for each center to reveal its
pairs truthfully, and hence maximizes the number of pairs
in the central pool from which the clearinghouse will con-
struct a global matching. Our contributions in this work are
the following. First, we design a credit-based strategy-proof
matching mechanism for the dynamic model that considers
the incentives of the different transplant centers. The mech-
anism is efficient and guarantees long-term individual ra-
tionality (IR). Our results apply not only to matching via
2-cycles—a restriction present in some kidney exchange pa-
pers: our matchings can also include cycles of any length
and altruist-initiated chains, which is important at least in

3Internal matches are also logistically easier to handle.



kidney exchanges. Second, we show that the mechanism can
be adjusted to guarantee immediate individual rationality at
the expense of economic efficiency, while preserving strat-
egy proofness via the credits. Our experiments show that
the efficiency loss is very small in practice. This variant of
the mechanism circumvents—via the use of the credits—a
well-known impossibility result, proved for static kidney ex-
change, that no IR mechanism is both maximal and strategy
proof. Our mechanism does not require assumptions about
the underlying distribution of compatibility graphs—a nu-
ance that has previously produced conflicting results in other
aspects of theoretical kidney exchange. Finally, experiments
with the mechanism, both on real data from a large fielded
kidney exchange in the US as well as from a data generator,
show that the number of resulting matches is substantially
greater than without the mechanism.

Related Work

The idea of kidney exchange was introduced by Rapa-
port (1986), and the first organized kidney exchange started
in 2003 (Roth, Sonmez, and Unver 2004). The topic has
attracted researchers from non-medical fields such as eco-
nomics (Roth, Sénmez, and Unver 2005; 2007b; Akbar-
pour, Li, and Gharan 2014) and computer science (Abraham,
Blum, and Sandholm 2007; Bird, Manlove, and Rizzi 2009;
Dickerson, Procaccia, and Sandholm 2012a; 2013; 2014;
Dickerson and Sandholm 2014; Anshelevich et al. 2013;
Liu, Tang, and Fang 2014; Li et al. 2014). The National Or-
gan Transplant Act of 1984 makes it illegal to buy or sell
a kidney in the US, thus making donation the only viable
option for kidney transplantation (Roth 2007; Leider and
Roth 2010). Similar legislation exists throughout most of the
world. The initial proposal for a large-scale kidney exchange
that was made by Roth, S6nmez, and Unver (2004) included
the ability to use both cycles (where each donor donates a
kidney to the next patient, with the final donor donating her
kidney to the first patient) and chains (that are like cycles
except that the cycle does not close).*

In the bulk of the work on mechanism design for kid-
ney exchange (including our paper), the agents that need
to be incentivized are the transplant centers (not the donor-
patient pairs or altruistic donors) (Ashlagi and Roth 2014;
Toulis and Parkes 2011; S6nmez and Unver 2013; Ashlagi
et al. 2013). A center can decide to reveal none, some, or all
of its pairs and altruists to the clearinghouse. Roth, Sonmez,
and Unver (2007a) proved that no individually rational (IR)
and maximal mechanism can also be strategy proof (in a
static model, where patients and donors do not arrive and
leave over time). According to their definition, a matching
is maximal if there exists no larger matching that fully en-
compasses the former. One of the main contributions of our
paper is the circumvention of this impossibility result via
a credit mechanism in a dynamic model, and real kidney
exchanges are dynamic. Ashlagi and Roth (2014) contin-

“Their proposal was to have chains start with a pair that has
received a kidney from the deceased-donor waiting list. In practice,
chains start with an altruistic donor that does not expect anything
in return.

ued their work in the static model, showing that the effi-
ciency loss due to lack of strategy proofness can be very
high but that there exists an e-Bayesian incentive compati-
ble IR mechanism that tends to become nearly efficient in
the large under a dense random graph model.

Ashlagi et al. (2013) presented a randomized strategy-
proof IR mechanism for a static setting that delivers at least
50% of efficiency. Their model, though, is for 2-cycles only,
while ours supports cycles and chains of any length.

Model
We start from the standard kidney exchange model with a
set of n transplant centers, T = {7y,...,7,}, and a cen-

tral clearinghouse. The process is modeled as a game that
is divided into time periods: at each period, each center T;
receives a set V; = {v},..., v} of donor-patient pairs.’

We assume that a pair must be matched in the current
period or not at all. This could be motivated in a setting
where the patients are in critical condition and will not sur-
vive to the next period. Whether the assumption is a good
approximation of reality depends on the patient pool and
the cadence of matching in the particular exchange; there is
enormous variability in practice. For example, the National
Kidney Registry (a private exchange in New York) conducts
match runs multiple times per day, while Canada’s and the
UK’s national exchanges match four times per year. Extend-
ing our mechanism to survival spans beyond one period does
not seem straightforward; we leave that for future research.

We treat altruistic donors as pairs. Because pairs only last
for one period, any chain will end during the period, and the
last pair donates to the deceased-donor waiting list. Assum-
ing that surgery is allocated to the center that submitted the
altruist that started that chain (Woodle et al. 2010), the num-
ber of surgeries that a center gets from an altruist is the same
as that from a pair, so we can treat altruists as pairs.®

The arrival rate distribution of pairs to each transplant
center 7; is of a general form with a mean of k;, which is
known by the center and the clearinghouse. (For example in
the case of the UNOS nationwide exchange in the US, this
could be justified by the fact that UNOS has visibility to the
full history of both the deceased-donor waiting list and the
transplants that each center in the country has conducted.)
The distributions are defined over finite intervals, which can
be justified by each transplant center’s capacity for patients.
For exposition purposes, we assume each transplant center’s
upper bound on capacity is 2k;, though the mechanism can
be adjusted to any bound. We also make the innocuous as-
sumption that for every transplant center, in every period,
there is a non-zero probability of getting a pair that the cen-
ter cannot match internally and the pair participates in one
or more (but not all) global maximum matchings; this moti-
vates the centers to consider participation in the mechanism.

3 A donor can donate one organ and a patient needs one organ;
each belongs to a single pair. (A pair can have multiple donors.)

The number of surgeries a center gets also depends on whether
donors fly to recipients’ centers or have their kidneys shipped. Both
modes are used in practice; our mechanism supports each.



Centers are assumed to be self-interested and risk-neutral,
so their goal is to maximize the expected number of pairs per
period out of those they “own” that will be matched (inter-
nally or through the clearinghouse) over an infinite horizon.

Our mechanism manages a credit balance for the different
transplant centers as explained in the following sections. The
matching decisions made by the mechanism at each time
period are solely based on the centers’ states, captured for
each center by the tuple (V;, ¢;), where V; is the transplant
center’s set of pairs and ¢; is the transplant center’s credit
balance. The strategy of any transplant center 7; is thus a
mapplng Si . (V;, Ci) N V'idisclosed C ‘/ia where ‘/idisclosed
is the set of pairs the center discloses to the clearinghouse.

The clearinghouse can use combinations of two structures
for matching: cycles and chains.” Chains enable the inclu-
sion of altruistic donors, who enter the pool without a paired
patient, enabling more flexibility in the matching. Chains
significantly increase efficiency in theory (Dickerson, Pro-
caccia, and Sandholm 2012b; Ashlagi et al. 2012) and prac-
tice (Rees et al. 2009). The proposed mechanism and its
properties do not change even if only cycles or only chains
were used, rather than both—which is the status quo in most
modern kidney exchanges in practice.

We design our mechanism so that the central clearing-
house can use a myopic matching rule that performs a max-
imum cardinality matching in the reported pool at every pe-
riod, possibly subject to external constraints imposed by the
mechanism. This is a desirable property of the model, as my-
opic matching is the status quo in fielded kidney exchanges.

Mechanism Desiderata

Before presenting our mechanism, we define the concepts
of individual rationality, efficiency, and strategy proofness.
Individual Rationality (IR). We address two common no-
tions of individual rationality. Long-term individual ratio-
nality requires that the participation in the mechanism re-
sults in at least the same expected utility as not participating
overall (Parkes 2001). In our setting this maps to having at
least the same long-run number of matches if participating
in the mechanism. The second, stricter IR notion, immedi-
ate individual rationality, requires that at each time period,
the allocation guarantees the transplant center at least the
number of matches that it would have received by matching
internally (Ashlagi and Roth 2014). While the two notions
coincide in static settings, they differ in dynamic settings.

Efficiency. A mechanism is efficient if it results in an alloca-
tion that maximizes global utility, i.e., social welfare. In our
setting, this is measured as the number of matches produced.
Thus an efficient algorithm produces a maximum matching
given all pairs that the transplant centers have (regardless of

"There are two kinds of chains in practice: domino chains where
the last pair in the chain donates to the deceased-donor waiting
list (Montgomery et al. 2006), and nonsimultaneous, extended,
altruistic-donor (NEAD) chains (Rees et al. 2009), where the donor
in the final pair is used as a virtual altruist in later matching periods
to potentially continue the chain, thus enabling the chain to poten-
tially go on forever. In our model, the life span of a pair is assumed
to be one period, so our chains are domino chains.

which pairs they reveal). We also consider IR efficiency, de-
fined as the maximum matching that guarantees IR in each
period (i.e., immediate IR). We further consider the notion
of maximal matching (Ashlagi and Roth 2014), which is a
matching that cannot be extended to a larger matching with-
out changing the original matching.
Strategy proofness. A mechanism is strategy proof (aka.
dominant-strategy incentive compatible) if under that mech-
anism, in every state of the world (i.e., credits and sets of
pairs of each transplant center) each center is no worse off
reporting all of its pairs than reporting a subset thereof.

We use a strong notion of dominance between a center’s
strategies; it does not depend on what other centers reveal.

Definition 1. Under a given mechanism, strategy S; for a
center T; dominates strategy S. if by being applied starting
from any state of the world, the expected number of matches
Sor 7; is strictly greater under S; than under S..

Transplant centers do not always have incentive to reveal
all their pairs (Toulis and Parkes 2011; S6nmez and Unver
2011; Ashlagi et al. 2013; Ashlagi and Roth 2014), and in
practice, hiding of pairs is rampant (Stewart et al. 2013).
This causes the number of overall matches (counting both
clearinghouse matches and centers’ internal matches) to be
suboptimal—that is, efficiency is compromised.

Our Credit-Based Mechanism

In this section, we present our mechanism. It incentivizes
truthful revelation by lowering the probability that in the fu-
ture, a transplant center’s disclosed pairs will be included
in a global matching, if that center reveals in the present a
smaller number of pairs than it is expected to have.

The mechanism is based on managing an account of cred-
its for each transplant center. Decisions of whether to prefer
one transplant center over another in the global matching are
then influenced by the credit balances of the different cen-
ters. In general, having more credits will increase the likeli-
hood of a center having more of its disclosed pairs matched
by the mechanism. By giving and taking credits from the
different centers, the clearinghouse incentivizes each center
to adopt a truthful strategy, that is, to reveal all of its pairs.
Thus, the number of pairs in the pool from which the clear-
inghouse will construct the global matching is maximized.

At each period, the mechanism performs 1) an initial
credit balance update, 2) a global matching, and 3) a final
credit balance update. Below we describe each of these steps
in detail. We use M to denote a matching, u;(M) to denote
the number of matched pairs belonging to transplant center
7; in the matching M, and u(M) to denote the total number
of matched pairs (i.e., u(M) = >__ cpui(M)).

Upon receiving the sets of pairs disclosed by the different
transplant centers, the mechanism constructs a directed, la-
beled compatibility graph G = (V, E) with a vertex v € V
for each disclosed donor-patient pair (labeled by its trans-
plant center) and directed edge ¢ € E from v; to v; for any
two pairs (v;,v;) for which the donor of v; is compatible
with the patient of v;. The graph is used as a basis for deter-
mining the matches for the different transplant centers.



Algorithm 1 Credit-based matching mechanism.

1: function RUNMECHANISM(G, T, ¢)

2: ¢ < INITIALCREDITUPDATE(T), ¢)
3 O~ + MAaXpf € ALLLEGALMATCHINGS(G) U(M>
4: return COMPUTEMATCHING(O=, G, T, ¢)

: function INITIALCREDITUPDATE(T, ¢)
for each transplant center i € T" do
¢ — ¢ + 4ki ("/idzsclosed| _ kz)
return c

1

2

3

4

1: function MATCHINGS(G,T,C=,07)
2: M + ALLLEGALMATCHINGS(G)

3: M—{M|MeMAauM)=0}

4 for each transplant center ¢ € T' do

5 if exists C=(i) then

6 M—{M|MeMAnau(M)=C=(i)}
7 return M

1
2

: function ALLLEGALMATCHINGS(G)
Computes the set of all feasible matchings in G

// Update centers’ credit balances based on reported vs. expected type
// Compute a maximum global matching
// Run the iterative matching process and return optimal matching

1: function COMPUTEMATCHING(O=, ¢)

2 CC+ O, M+

3 for each transplant center i € RANDPERM(T') do

4 Mer < arg maXMeMATCHINGs(G,T,C:,O:) UZ(M)
S M;™ < arg minevarcrines(G,7,0=,0=) u; (M)
6: if ¢; > 0 then

7 M* M;r

8: ci < ¢ — (us(M;") — u; (M)

9: else
10: M* — M,
11: C; ¢ + (ul(Mj) — UZ(MZ_))

12: C=(4) + u;(M*)

13: return (c, M*)

The pseudocode for the matching mechanism
is given as Algorithm 1. The first step, function
INITIALCREDITUPDATE, is updating the credit bal-
ance of each center based on its expected arrival rate. This
is done by comparing the number of pairs disclosed by
each transplant center (‘Vidisczosedb in this period to the
number of pairs the transplant center is expected to get
in this period, k;, and updating the credit balance of each
transplant center 7;, denoted c;, as follows:

c = +4ki(“/idisclosed| o kz) (1)

The idea is that the more pairs reported by the transplant
center, the greater the number of credits awarded (or, de-
pending on k;, the fewer the number of credits taken). Thus,
if we can show that receiving more credits yields greater ex-
pected utility than hiding a pair from the clearinghouse, a
transplant center has incentive to disclose all of its pairs.
Since the arrival of pairs to the transplant center is proba-
bilistic, in periods where the transplant center receives fewer
than k; pairs, it will lose some credits despite being truthful.

Next, the mechanism conducts the global matching. This
is done by iteratively switching between different maxi-
mum matchings where, on each iteration, a center is re-
warded or punished base on its credits (Step 4 in the main
RUNMECHANISM, which calls COMPUTEMATCHING).
The function COMPUTEMATCHING iterates over the
different centers according to a random permutation
(RANDPERM), gradually building the set of constraints un-
der which the next maximum matching to be evaluated will
be selected. The constraints are stored in the structure C=
(initially set to &) and they specify the exact number of
matches for each center. For each center in the permuta-
tion, the mechanism extracts a matching that maximizes the
center’s number of matches and one that minimizes it, de-
noted M;r and M respectively, subject to C~ and requiring
that the total matching size equals that of the fully uncon-

strained one (via function MATCHINGS). This latter value,
O=, is obtained in Step 3 of RUNMECHANISM. It is used to
guarantee that the global matching produced is also a maxi-
mum matching. The mechanism then takes transplant center
7;’s current credit balance into account by choosing to pro-
ceed with either M;" or M, as a constraint for the follow-
ing iterations. A positive balance results in choosing M;r
and a negative balance in M, (Steps 6-11). Therefore, the
function COMPUTEMATCHING returns a maximum match-
ing that corresponds to all of the reward and punishment de-
cisions made throughout the algorithm in this period.

Theorem 1. Under this mechanism, with probability 1, any
untruthful strategy S is dominated by every strategy S’ such
that S'(-,-) = S(-, ) except for one (arbitrary) time step in
which 7;’s (arbitrary) state is (V;, ¢;), and S hides j pairs
while S’ hides j — 1 pairs.

Proof. Letc? and ¢f denote the credit balance of transplant
center 7; when using strategy S and S’, respectively. Let t*
denote the time period when S’ and S differ. (Since pairs
exist for only one time period each, the only part of the state
that carries across periods is the credits, and therefore there
is exactly one such period ¢*.) Then, to prove that S’ dom-
inates S, it suffices to show that, at some period ' > t*,
(i) the two strategies enter that period with ¢ = ¢7, thus
resulting in identical treatment by the mechanism from that
point forward, and (ii) strategy S’ has received at least one
more match than S in aggregate.

We track two variables at each time period ¢: the differ-
ence in credit balances D! = cf' — ¢7, and the aggregate
difference in total matches (in favor of S”) D! . For each

t~ < t*, S and S’ are identical: D! = D! = 0. At the
deviation time period t*, we have Df = 4k; (because S’ re-
vealed one additional pair, resulting in 4k; additional credits
(Equation 1) and Dﬁ; > —2k; + 1. This latter lower bound



follows from the maximum additional number of matches a
transplant center could receive by withholding a single ad-
ditional pair, 2k; — 1, which follows from the center’s max-
imum number of pairs at any period being 2k;. We will now
focus on the time periods after the single deviation between
S’ and S has occurred and show that, with high probability,
there is a future time period ¢’ > ¢* where Dz/ = 0 and
Dt > 1.

For each t1 > t*, the difference in credits D£+ can only
change in two ways: first via the initial credit update part of
the mechanism (Equation 1), and second, in Algorithm 1 on
steps 6-11 of COMPUTEMATCHING. Since .S and S’ (after
their single deviation) reveal the same pairs, Equation 1 will

not affect fo. Thus, steps 6-11 fully define the future dy-
namics of D! and D!, . This yields the following bounds:
D" € [—4k; + 4,4k;] and D! € [~2k; + 1,2k; — 1]. In-
deed, from period t* onward, Df will keep changing, with
the two strategies possibly alternating in taking the lead in
number of overall matches. If sign(cy) # szgn( "), the
denoted A(DE)) = D’f+ —

change in the difference Dt "

Dt =1, will be

m >

tty UZ(M:_) — ui(Mi_) ifcisl >0
Al ) = { —(u;(M;T) —u;(M;)) otherwise &
Furthermore, the change in difference Df, denoted
A(DE") = Dt" — Dt =1, will be exactly
A(DE") = —2A(DY). 3)

Because the mechanism’s matching favors the strategy
that is ahead in credits, and centers favored in the match-
ing lose credits, the strategy that is ahead in credits loses
more credits over time. (By the assumption made earlier
in the paper that there is a non-zero probability of receiv-
ing a pair that cannot be matched internally but can be
matched in one but not all maximum global matchings, at
each time period there is a constant probability of spending
a credit to receive a match, so the credit balance will change
over time with probability 1.) Formally, the random walk of

Df € [—4k; + 4, 4k;] is such that it goes to zero by some
time period t' > t*; that is, it starts as Dz* = 4k; and moves
to 0 by way of

A(DL). )

A(DL). 5)

During the same time periods, in lock step, Dfn > —2k;+

1 moves to
Dy =D+ Y

ttet*+1,...,

A(Dfi ). ©)

From Equation 3, we have A(D!, ) = —1A(D!"), so

—5AD). )

By Equation 5 and the lower bound D!, > —2k; + 1, it
follows that
’ ].
Dl > (—2k; +1) — 5(741@-) =1 ®)

So, by the time ¢’ when the credit balances of the two
strategies have equalized, strategy S’ is ahead of S by at
least one match. ]

Corollary 1. Under this mechanism, the truthful strategy of
revealing all pairs dominates all untruthful ones (w.p.1).

Proof. Using Theorem 1, with probability 1, any untruthful
strategy S is dominated by a more truthful strategy S’ that
is identical to S except that it is truthful in a single period
in which S is not truthful. Hence, each untruthful strategy is
dominated by a strategy that drops the first untruthful step.
Repeating this process recursively, we end up with the truth-
ful strategy dominating any other strategy. O

Corollary 2. The mechanism is long-term IR (w.p.1).

Proof. Not participating in the mechanism is equivalent to
participating but hiding all pairs. From Corollary 1, w.p.1,
this strategy is dominated by participating truthfully. [

Using the multiplier 4%; in the credit update step

The initial credit balance update (Equation 1, used in func-
tion INITIALCREDITUPDATE in the mechanism) uses a
somewhat cryptic-seeming credit multiplier 4%;. Theorem 1
and its proof hold for any multiplier A > 4k; — 4. We
now provide an example that shows that for any multiplier
A < 4k; — 4, the mechanism can fail to be strategy proof.

Fix some constant A < 4k; — 4. Consider a setting with
two transplant centers. We will focus on transplant center 74,
which has an arrival distribution with mean k; = 3. On this
particular time step, 7; received the maximum number of
pairs it could get (i.e., 2k, = 6 pairs). Transplant center 7
also receives some pairs in this period, and reveals them to
the clearinghouse. Two possible cycles exist in the revealed
pool; Figure 1 shows these cycles, with 71’s pairs in white
and 7 ’s pairs in dark gray. Note that the cycles overlap (pair
v} from transplant center 75 is present in both cycles), so the
clearinghouse can only choose one cycle.

eQ 0
® @ o 6
e« .@

Figure 1: Two cycles in the global compatibility pool.

In this case, 7; has the following two options (among oth-
ers): disclosing all of its pairs and hoping that the right cy-
cle will be chosen (otherwise, only one of its pairs will be



matched) or hiding only pair v$ (resulting in all disclosed
pairs being matched). Choosing the first option results in
A(2k; — k;) credits, but the left cycle may be selected (re-
sulting in only one of 71 ’s pairs being matched, v$) if 71 falls
behind 75 in the random permutation over centers. But, by
simply hiding v$ (which breaks the left cycle, forcing the
smaller cycle to be chosen), this transplant center will in-
stead lose A credits, but gain an additional four matches to
71 relative to the truthful case.

To ensure that transplant center 7; will be truthful, we
must set A such that A > (2k; — 1 — 1). Still, in this case, by
adopting a truthful strategy there exist two possible match-
ings (with the same overall utility), so if the right cycle will
be selected, 71 will lose (2k; — 1) — 1 credits in the final
credit balance update (the difference between the maximum
and minimum matchings). Thus, the inequality that we need
to satisfy is A > [(2k; — 2) + (2k; — 2)], which simplifies to

Trading Efficiency for Immediate IR

While the above mechanism is efficient and strategy proof,
the individual rationality it guarantees is only in the long
term. We now show how the mechanism can be adjusted to
guarantee individual rationality at each period (immediate
IR)—of course, taking the value of the credits for the future
into account. The immediate individual rationality comes at
the cost of a decrease in the amount of guaranteed efficiency.
Practically, guaranteeing immediate IR does not contribute
much; even with only long-term IR guaranteed, all centers
are incentivized to participate and report truthfully. Still, the
revised mechanism circumvents a well-known impossibility
result in static kidney exchange (Roth, S6nmez, and Unver
2007a), so it is important in its own right.

In a given time period, each transplant center 7; has some
(potentially empty) subset of pairs VM C V; that it can
match internally. The main challenge in designing a truthful
yet efficient and immediate IR mechanism is that, relative to
just V:'™ | the mechanism can only provide at most |V, |
matches in the worst case—which is the same number that
7; would have obtained by matching each pair in V' inter-
nally. One possible workaround for this is to have the mech-
anism deliver a global solution where each transplant center
receives at least as many matches as it could have matched
internally (computed based on the pairs it revealed). Still, as
discussed by Ashlagi and Roth (2014), this property is not
enough to incentivize truth-telling for each transplant center.

By moving from a single-period model to a (more real-
istic) multi-period, dynamic model, we can overcome this
problem—even though pairs do not carry over across peri-
ods. Specifically, in our model we can extend the state of
each transplant center to (V;,C= (i), ¢;), where C= (i) is the
number of pairs transplant center 7; could have matched in-
ternally out of its disclosed set V,#s¢los¢d_ Since the clear-
inghouse can compute C= (i), all that remains is to change
the mechanism so that instead of generating maximum
matchings, it generates maximum constrained matchings
where each transplant center is guaranteed at least C= (i)
matches. Note that there is at least one matching that guar-
antees at least C= (i) matches for each transplant center 7;:

in the worst case, each center receives exactly its internal
matching (among disclosed vertices).

The fact that the revised mechanism is immediate IR fol-
lows from the fact that each transplant center receives at least
the size of its internal matching. Similarly, the mechanism is
IR-efficient, as it guarantees the maximum matching avail-
able subject to the internal-matching constraints. The proof
for its strategy proofness is the same as the one given for the
original mechanism.

Experiments

In this section, we evaluate the mechanism experimentally.
We use data from a large, fielded kidney exchange in the
US run by the United Network for Organ Sharing (UNOS).
The exchange started in 2010 and now includes over 140
transplant centers. We include 3-cycles and 4-chains, in ac-
cordance with the current practice of the UNOS exchange.

We also include experiments on an older family of graphs

in kidney exchange research, from a generator due to Said-
man et al. (2006). While the UNOS family of graphs
more closely mirrors reality (see, e.g., (Ashlagi et al. 2012;
Ashlagi, Jaillet, and Manshadi 2013; Dickerson, Procaccia,
and Sandholm 2013; 2014)), we include the Saidman et al.-
style graphs for posterity. This distribution roughly mim-
ics a US-based kidney exchange that draws patients uni-
formly from the national waiting list of people in need of
kidneys (UNOS), and draws donors uniformly from the US
adult population. Indeed, while this may someday mimic the
composition of a US-wide kidney exchange in its steady
state, it does not accurately reflect the composition of cur-
rently fielded exchanges.
Experimental Setup. Our simulation framework was built
in Java 1.6 on top of a vetted open source kidney exchange
software suite;® we incorporated our mechanisms into this
suite. At a high level, a single run of simulation executes
as follows. First, fix the number of transplant centers |7,
arrival distribution and time limit 7. Then, for each time pe-
riodt € {1,...,n}, we execute the mechanism as described
in Algorithm 1. We track the number of vertices matched by
the clearinghouse and by each center internally.

Solving the maximization/minimization problem (e.g.,
M:_ < arg MAaX pre MarcHINGS (G, T,C=,0=) u;(M)) described
in Algorithm 1 is NP-complete (Abraham, Blum, and Sand-
holm 2007). We use an integer programming (IP) formu-
lation with constraints that enforce the space of feasible
matchings described by the function MATCHINGS. The IP
is built on top of the “cycle formulation” of the kidney ex-
change problem, where one binary decision variable z is
associated with each cycle or chain c in the set of all legal
cycles and chains in a graph (Abraham, Blum, and Sand-
holm 2007). Our code uses IBM CPLEX as the IP solver.

Simulations were performed over n = 100 time peri-
ods and were parameterized in two major ways: number
of transplant centers (|T|) and arrival rate distribution. Ar-
rival rates varied from very low (e.g., ~ U[1, 5], where each
transplant center receives at least 1 pair, at most 5 pairs,
and on average 3 pairs per time period) to very high (e.g.,

8https ://github.com/JohnDickerson/KidneyExchange
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Figure 2: Median percentage increase in total matches (y-axis) using our mechanism with truthful transplant centers versus a centralized
mechanism with non-truthful transplant centers, for increasing |7T'| (x-axis) and arrival rates (different lines), for the efficient (2a,2c) and
IR-efficient (2b,2d) mechanisms, for the real UNOS (2a,2b) and generated Saidman (2¢,2d) data.

~ U|[25, 35], where each transplant center receives on av-
erage 30 pairs per time period). The percentage of altruists
received was determined endogenously by the UNOS data,
or set to 5% of the number of pairs in the Saidman case.
We simulated a homogeneous environment: the transplant
centers used the same strategy and had the same arrival rate
distribution. Transplant centers were either truth-telling, re-
vealing all their pairs to the clearinghouse, or strategic, first
performing a maximum matching internally and then reveal-
ing the unmatched pairs to the clearinghouse. Runs for each
parameter setting were performed at least 25 times.
Experimental Results. Figure 2 shows the median percent-
age increase in total number of matches from using our
strategy-proof mechanisms (Algorithm 1 on Figures 2a and
2c, and the adapted IR-Efficient mechanism on Figures 2b
and 2d) with truth-telling transplant centers compared to
strategic ones. Error bars denote upper and lower quartiles.
In general, as the number of transplant centers increases
(shown on the x-axis), the relative gain stays flat or in-
creases. Similarly, as the arrival rates increase (shown as dif-
ferent lines), relative gains increase. Intuitively, as either of
these variables increases, the thickness of the reported pool
available to the clearinghouse increases relative to the thick-
ness of the internal pools of the transplant centers. As has
been shown theoretically and empirically (Roth, Sonmez,
and Unver 2004; Ashlagi and Roth 2014; Dickerson, Pro-
caccia, and Sandholm 2012b), thicker pools enable a larger
percentage of pairs in the pool to be matched. Also, the ef-
ficient mechanism and the IR-efficient mechanism perform
similarly.

Conclusions and Future Research

We proposed the first kidney exchange mechanism for multi-
period dynamic settings that incentivizes truthful revelation
of pairs and altruistic donors from transplant centers while
guaranteeing efficiency, and long-term individual rational-
ity. It is based on centers receiving credits when they reveal
more pairs than they are expected to have per period and los-
ing credits when they reveal fewer pairs than that. The cred-
its are used by the clearinghouse to favor transplant centers
in the global matching process in a specific way. The mech-
anism can also be adjusted to guarantee immediate individ-
ual rationality, though in this case it guarantees IR-efficiency
rather than efficiency. This latter result circumvents impossi-

bility results in static kidney exchange (Roth, Sonmez, and
Unver 2007a). We showed experimentally that both mech-
anisms result in significant gains on real data from a large
national kidney exchange, as well as on generated data.

Our mechanisms do not rely on the structure of the com-
patibility graph. In contrast, for example, theoretical results
on the length of chains in the Saidman et al. model (Dick-
erson, Procaccia, and Sandholm 2012b) are essentially con-
tradictory to those in a sparser model (Ashlagi et al. 2012).
Our results hold in either model—and in any other.

We believe that there is great potential for credit-based
mechanisms of the kind presented in this paper for kidney
exchange and other barter markets—and possibly applica-
tions beyond barter. There are many interesting directions
for future research. Most important is extending the model
to include pairs and altruistic donors that remain in the pool
for more than a single time period. Indeed, this was not an
issue in most prior theoretical kidney exchange literature, as
the focus was on static settings.

Other extensions include experimental investigation of
how the gains in efficiency vary in the presence of larger
and smaller transplant centers or when some of the centers
are not fully rational (with some probability they deviate
from their dominant, truthful strategy). We also plan to ex-
plore how robust our mechanism is to the expected arrival
rates; this may also beget the design of refinements of the
mechanism. Finally, we also plan to study time-discounted
settings, although, in a steady-state kidney exchange our ob-
jective of maximizing the average number of transplant per
period may be more appropriate since the real value of a hu-
man life should not change over time.
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