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Bipartite-matching markets pair agents on one side of a market with agents, items, or contracts on the op-

posing side. Prior work addresses online bipartite-matching markets, where agents arrive over time and are

dynamically matched to a known set of disposable resources. In this article, we propose a new model, Online

Matching with (offline) Reusable Resources under Known Adversarial Distributions (OM-RR-KAD), in which

resources on the offline side are reusable instead of disposable; that is, once matched, resources become

available again at some point in the future. We show that our model is tractable by presenting an LP-based

non-adaptive algorithm that achieves an online competitive ratio of 1
2 − ϵ for any given constant ϵ > 0.

We also show that no adaptive algorithm can achieve a ratio of 1
2 + o(1) based on the same benchmark LP.

Through a data-driven analysis on a massive openly available dataset, we show our model is robust enough

to capture the application of taxi dispatching services and ride-sharing systems. We also present heuristics

that perform well in practice.
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1 INTRODUCTION

In bipartite-matching problems, agents on one side of a market are paired with agents, contracts,
or transactions on the other. Classical matching problems—assigning students to schools, papers
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to reviewers, or medical residents to hospitals—take place in a static setting, where all agents exist
at the time of matching, are simultaneously matched, and then the market concludes. In contrast,
many matching problems are dynamic, where one side of the market arrives in an online fashion
and is matched sequentially to the other side.

Online bipartite-matching problems are primarily motivated by Internet advertising. In the basic
version of the problem, we are given a bipartite graph G = (U ,V ,E) where U represents the of-
fline vertices (advertisers) and V represents the online vertices (keywords or impressions). There
is an edge e = (u,v ) if advertiser u bids for a keyword v . When a keyword v arrives, a central
clearinghouse must make an instant and irrevocable decision to either reject v or assign v to one
of its “neighbors” u in G and obtain a profit we for the match e = (u,v ). When an advertiser u
is matched, it is no longer available for matches with other keywords (in the most basic case) or
its budget is reduced. The goal is to design an efficient online algorithm such that the expected
total weight (profit) of the matching obtained is maximized. Following the seminal work of Karp
et al. [29], there has been a large body of research on related variants (overviewed by Mehta [40]).
One particular flavor of problems is online-matching with known identical independent dis-

tributions (OM-KIID) [14, 21, 26, 28, 36]. In this context, agents arrive over T rounds, and their
arrival distributions are assumed to be identical and independent over all T rounds; additionally,
this distribution is known to the algorithm beforehand.

Apart from the Internet-advertising application, online bipartite-matching models have been
used to capture a wide range of online resource allocation and scheduling problems. Typically, we
have an offline and an online party representing, respectively, the service providers (SP) and
online users; once an online user arrives, we need to match it to an offline SP immediately. In
many cases, the service is reusable in the sense that once an SP is matched to a user, it will be gone
for some time, but will then rejoin the system afterwards. Besides that, in many real settings the
arrival distributions of online users do change from time to time (i.e., they are not i.i.d.). Consider
the following motivating examples.

Taxi Dispatching Services and Ride-sharing Systems. Traditional taxi services and ride-
sharing systems such as Uber and Didi Chuxing match drivers to would-be riders [30, 31, 50, 55].
Here, the offline SPs are different vehicle drivers. Once an online request (potential rider) arrives,
the system matches it to a nearby driver instantly such that the rider’s waiting time is minimized.
In most cases, the driver will rejoin the system and can be matched again once she finishes the
service. Additionally, the arrival rates of requests changes dramatically across the day. Consider
the online arrivals during peak hours and off-peak hours for example: The arrival rates in the
former case can be much larger than the latter. Though our model is primarily motivated by taxi-
dispatching services and ride-sharing platforms, we acknowledge that it does not address the full
generality of these applications. In particular, our work focuses on the temporal components of
rideshare; spatial components such as match-specific driver movement are not modeled [17, 18, 33].
Since we make the simplifying assumption that the stochastic process that determines the parame-
ters in the environment is independent of the algorithm’s decisions, this may not fully capture the
scenario where requests are heterogenous with vastly different ride times. One potential direction
to extend this model is to consider correlated reusable rates, which makes the theory much more
challenging.

Organ Allocation. Chronic kidney disease affects tens of millions of people worldwide at great
societal and monetary cost [43, 49]. Organ donation—either via a deceased or living donor—is a
lifesaving alternative to organ failure. In the case of kidneys, a donor organ can last up to 15 years in
a patient before failing again. Various nationwide organ donation systems exist and operate under
different ethical and logistical constraints [12, 20, 37], but all share a common online structure:
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The offline party is the set of patients (who reappear every 5 to 15 years based on donor organ
longevity), and the online party is the set of donors or donor organs, who arrive over time. Similarly,
in some blood or plasma donation settings, donors might reappear after some number of weeks.

Similar scenarios can be seen in other areas such as wireless network connection management
(SPs are different wireless access points) [59] and online cloud computing service scheduling [42,
60]. Inspired by the above applications, we generalize the model of OM-KIID in the following two
ways.

Reusable Resources. Once we assign v to u, u will rejoin the system after Ce rounds with e =
(u,v ), where Ce ∈ {0, 1, . . . ,T } is an integral random variable with known distribution. In this
article, we call Ce the occupation time of u w.r.t. e . In fact, we show that our setting can directly
be extended to the case when Ce is time-sensitive: When matching v to u at time t , u will rejoin
the system after Ce,t rounds. This extension makes our model adaptive to nuances in real-world
settings. For example, consider the taxi dispatching or ride-sharing service: The occupation time
of a driver u from a matching with an online user v does depend on both the user type of v (such
as destination) and the time when the matching occurs (peak hours can differ significantly from
off-peak hours).

Known Adversarial Distributions (KAD). Suppose we have T rounds and that for each round
t ∈ [T ],1 a vertex v is sampled from V according to an arbitrary known distribution D where
the marginal for v is {pv,t } such that

∑
v ∈V pv,t ≤ 1 for all t . Also, the arrivals at different times

are independent (and according to these given distributions). The setting of KAD was introduced
by References [4, 5] and is known as Prophet Inequality matching.

We call our new model Online Matching with (offline) Reusable Resources under Known

Adversarial Distributions (OM-RR-KAD). Note that the OM-KIID model can be viewed as a
special case whenCe is a constant (with respect toT ) and {pv,t |v ∈ V } are the same for all t ∈ [T ].

Competitive Ratio. Let E[ALG(I,D)] denote the expected value obtained by an algorithm ALG
on an input I and arrival distributionD. Let E[OPT(I)] denote the expected offline optimal value,
which refers to the optimal solution when we are allowed to make choices after observing the en-

tire sequence of online arrival vertices. Then, the competitive ratio is defined as minI,D
E[ALG(I,D)

E[OPT(I)] .

It is a common technique to use an LP optimal value to upper bound E[OPT(I)] (called the bench-
mark LP) and hence get a valid lower bound on the resulting competitive ratio.

Adaptive vs. non-adaptive algorithms. An online algorithm ALG is called non-adaptive if the
strategy for all time-steps t , denoted by ALG(t ), is pre-computed before the realizations of the
online process. In contrast, adaptive algorithms can choose the strategy for time-step t after seeing
the random realizations of all the random processes (e.g., random seeds used in the algorithm,
arrivals of online requests and occupation times of drivers) in steps 1, 2, . . . , t − 1.

1.1 Our Contributions

First, we propose the new model of OM-RR-KAD to capture a wide range of real-world applications
related to online scheduling, organ allocation, rideshare dispatch, among others. We claim that this
model is tractable enough to obtain good algorithms with theoretically provable guarantees and
general enough to capture many real-life instances. Our model assumptions take a significant step
forward from the usual assumptions in the online-matching literature where the offline side is
assumed to be single-use or disposable. This leads to a larger range of potential applications that
can be modeled by online-matching. The first part of the article focuses on the abstract model, and

1Throughout this article, we use [N ] to denote the set {1, 2, . . . , N }, for any positive integer N .
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though the experiments are motivated using ride-share, we do not get into the application-specific
assumptions/issues one may run into. For specific discussion on issues that arise when applied to
ride-share, we defer to Section 5.

Second, we show how this model can be cleanly analyzed under a theoretical framework. We
first construct a linear program (LP) LP (1), which we show is a valid upper bound on the expected
offline optimal value (note that the latter is hard to characterize). Next, we propose an efficient non-

adaptive algorithm that achieves a competitive ratio of 1
2 − ϵ for any given constant ϵ > 0. This

algorithm solves the LP and obtains an optimal fractional solution. It uses this optimal solution
as a guide in the online phase. Using Monte-Carlo simulations (called simulations henceforth),
and combining with this optimal solution, our algorithm makes the online decisions. In particular,
Theorem 1 describes our first theoretical results formally.

Theorem 1. LP (1) is a valid benchmark for OM-RR-KAD. There exists a non-adaptive online

algorithm that achieves an online competitive ratio of 1
2−ϵ for any given ϵ > 0 against the benchmark

LP (1).

Third, we show that the online-competitive analysis of the non-adaptive algorithm is tight with
respect to the choice of our benchmark LP. Specifically, we show that when restricted to LP (1), no
adaptive algorithm can achieve a competitive ratio better than 1

2 (Theorem 2), and no non-adaptive

algorithm can beat 1
2 even when all Ce are deterministic and equal (Theorem 3).

Theorem 2. No adaptive algorithm can achieve a competitive ratio better than 1
2 + o(1) against

the benchmark LP (1). Here, o(1) is a vanishing term when T is sufficiently large.

Theorem 3. No non-adaptive algorithm can achieve a competitive ratio better than 1
2+o(1) against

the benchmark LP (1) even when all Ce are deterministic and equal. Here, o(1) is a vanishing term

when both of Ce and T /Ce are sufficiently large.

Finally, through a data-driven analysis on a massive openly available dataset, we show that
our model is robust enough to capture the setting of taxi hailing/sharing at least. Additionally,
we provide certain simpler heuristics that also give good performance. Hence, we can combine
these theoretically grounded algorithms with such heuristics to obtain further improved ratios in
practice. Section 5 provides a detailed qualitative and quantitative discussion.

1.2 Other Related Work

In addition to the arrival assumptions of KIID and KAD, there are several other important, well-
studied variants of online-matching problems. Under adversarial ordering, an adversary can ar-
range the arrival order of all items in an arbitrary way (e.g., online-matching [29, 53] and Ad-
Words [16, 41]). Under a random arrival order, all items arrive in a random permutation order (e.g.,
online-matching [35] and AdWords [24]). Finally, under unknown distributions, in each round, an
item is sampled from a fixed but unknown distribution. (e.g., Reference [19]). For each of the cate-
gories above, we list only a few examples considered under that setting. For a more complete list,
please refer to the book by Mehta [40].

Despite the fact that our model is inspired by online bipartite-matching, it also overlaps with
stochastic online scheduling problems (SOS) [38, 39, 52]. We first restate our model in the
language of SOS: We have |U | nonidentical parallel machines and |V | jobs; at every time-step a
single jobv is sampled fromV with probability pv,t ; the jobs have to be assigned immediately after
its arrival (or rejected right away); additionally, each jobv can be processed non-preemptively on a
specific subset of machines; once we assign v to u, we get a profit ofwe and u will be occupied for
Ce rounds with e = (u,v ), where Ce is a random variable with known distribution. Observe that
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the key difference between our model and SOS is in the objective: The former is to maximize the
expected profit from the completed jobs, while the latter is to minimize the total or the maximum
completion time of all jobs. In a recent concurrent work [22], they consider the dynamic assortment
of reusable resources. In their context, the offline side is the set of reusable resources, while the
online side is the set of consumers. They consider the arrival setting of KAD (which they call the
Bayesian model with non-identical distributions). The critical difference is that they assume that
in each round, on the arrival of an online customer, the algorithm should assign her a set of offline
resources, where each offline resource has a given budget. The benchmark LP has an exponential
number of variables, which is not solvable in polynomial time. They overcome this by assuming
an offline oracle, which returns an optimal solution to the benchmark LP for any given arrival
sequence of online customers. They design a similar simulation-based online policy that achieves
a competitive ratio of 1/2.

Research in ridesharing platforms and similar allocation problems is an active area of research
within multiple fields, including computer science, operations research, and transportation en-
gineering. State-independent policies were studied previously using theory from control and
queuing systems [11, 13, 46]. The role of pricing in the dynamics of drivers in ridesharing plat-
forms is also an active area of research in computational economics and AI/ML (e.g., References
[2, 10, 17, 33, 44, 47, 58]). Our problem is a form of online-matching in dynamic environments, which
is an active area of research within the AI/ML community. In particular, References [20, 31, 54, 55]
have studied algorithms for matching in various dynamic bipartite markets such as kidney ex-
change, spatial crowdsourcing, labor markets, and so on. A similar line of work on general graphs
is also prominent in the literature (e.g., References [3, 6–8]).

maximize
∑

t ∈[T ]

∑
e ∈E

wexe,t (1)

subject to
∑

e ∈Ev

xe,t ≤ pv,t ∀v ∈ V , t ∈ [T ] (2)

∑
t ′<t

∑
e ∈Eu

xe,t ′ Pr[Ce > t − t ′] +
∑

e ∈Eu

xe,t ≤ 1 ∀u ∈ U , t ∈ [T ] (3)

0 ≤ xe,t ≤ 1 ∀e ∈ E, t ∈ [T ] (4)

2 MAIN MODEL

In this section, we present a formal statement of our main model. Suppose we have a bipartite
graphG = (U ,V ,E) whereU andV represent the offline and online parties, respectively. We have
a finite time horizon T (known beforehand) and for each time t ∈ [T ], a vertex v will be sampled
(we use the term v arrives) from a known probability distribution {pv,t } such that

∑
v ∈V pv,t ≤ 12

(noting that such a choice is made independently for each round t ). The expected number of times
v arrives across the T rounds,

∑
t ∈[T ] pv,t , is called the arrival rate for vertex v . Once a vertex v

arrives, we need to make an irrevocable decision immediately: either to rejectv or assignv to one of
its neighbors inU . For each u, once it is assigned to some v , it becomes unavailable forCe rounds
with e = (u,v ), and subsequently rejoins the system. Here, Ce is an integral random variable
taking values from {0, 1, . . . ,T } and the distribution is known in advance. Each assignment e is
associated with a weight we and our goal is to design an online assignment policy such that the

2Thus, with probability 1 −∑v∈V pv,t , none of the vertices from V will arrive at t .
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13:6 J. P. Dickerson et al.

total expected weights of all assignments made is maximized. Following prior work, we assume
|V | � |U | and T � 1. Throughout this article, we use edge e = (u,v ) and assignment of v to u
interchangeably.

For an assignment e , let xe,t be the probability that e is chosen at t in any offline optimal algo-
rithm. For each u (likewise for v), let Eu (Ev ) be the set of neighboring edges incident to u (v). We
use the LP (1) as a benchmark to upper bound the offline optimal. We now interpret the constraints.
For each round t , once an online vertex v arrives, we can assign it to at most one of its neighbors.
Thus, we have: If v arrives at t , then the total number of assignments for v at t is at most 1; if v
does not arrive, then the total is 0. The LHS of (2) is exactly the expected number of assignments
made at t for v . It should be no more than the probability that v arrives at t , which is the RHS of
(2). Constraint (3) is the most novel part of our problem formulation. Consider a given u and t . In
the LHS, the first term (summation over t ′ < t and e ∈ Eu ) refers to the probability that u is not
available at t while the second term (summation over e ∈ Eu ) is the probability that u is assigned
to some driver at t , which is no larger than probability u is available at t . Thus, the sum of the first
term and second term on LHS is no larger than 1.3 This argument implies that the LP forms a valid
upper-bound on the offline optimal solution and hence, we have the first part of Lemma 4.

Lemma 4. The optimal value to LP (1) is a valid upper bound for the offline optimal. Moreover,

suppose for some δ ≥ 0, we have an estimate f (e,y) of Pr[Ce > y] for all edges e and y ≥ 0 , where

f (e,y)/Pr[Ce > y] always lies in [1/(1 + δ ), 1 + δ]. Then, by using f (e, t − t ′) in the LP instead of

Pr[Ce > t − t ′] and scaling down the resultant vector x by (1+δ ), we only get a further loss of (1+δ )
in the competitive ratio.

Proof. Fix any offline optimal algorithm OPT. For each assignment e = (u,v ) and t , let Xe,t

denote an indicator random variable for the event that e is matched at t in OPT, which includes
the event that v arrives at time t . Let E[Xe,t ] = xe,t . Therefore, by linearity of expectation, the
expected performance of OPT is E[OPT] =

∑
t

∑
e wexe,t . Now, we justify that the solution {xe,t }

is feasible to all constraints in LP (1).
In constraint (2), the LHS denotes the probability that v is matched at t , which should be no

larger than the probability that vertexv arrives at time t . In constraint (3), the first part
∑

t ′<t

∑
e ∈Eu

xe,t ′ Pr[Ce > t − t ′] denotes the probability that u is occupied due to assignments made prior to
t while the second part

∑
e ∈Eu

xe,t is the probability that an assignment incident to u is made at
time t . Thus, the sum of these two parts should be no larger than 1. Constraint (4) is satisfied, since
{xe,t } are all probability values. Therefore, we have shown that the values {xe,t } is feasible to all
constraints in LP (1), which implies that the optimal value of LP (1) is a valid upper bound for the
performance of any offline optimal.

The second part follows directly from the fact that x is scaled down by a factor (1+δ ) and hence
the objective is scaled down by a factor (1 + δ ). �

3 SIMULATION-BASED ALGORITHM

In this section, we present a simulation-based algorithm. We will first give a gentle introduction
to simulation-based algorithms that has been developed and used in prior works (References [1]
and [15]).

Simulation-based algorithms. We use the term simulation throughout this article to refer to
Monte Carlo simulation and the term simulation-based attenuation to refer to the simulation and

3We would like to point out that our LP constraint (3) on u is inspired by Ma [34]. The proof is similar to that by Alaei

et al. [4] and Alaei et al. [5].
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attenuation techniques as shown in References [1] and [15].4 At a high level, suppose we have a
randomized algorithm such that for some event E (i.e., u is available at t ), we have Pr[E] ≥ c , then

we modify the algorithm as follows: (i) We first use simulation to estimate a value Ê that lies in the
range [Pr[E], (1 + ϵ ) Pr[E]] with probability at least 1 − δ . (ii) By “ignoring” E (i.e., attenuation, in

a problem-specific manner) with probability ∼ 1−c/Ê, we can ensure that the final effective value
of Pr[E] is arbitrarily close to c , i.e., in the range [c/(1 + ϵ ), c] with probability at least 1 − δ . This
simple idea of attenuating the probability of an event to come down approximately to a certain
value c is what we term simulation-based attenuation. The number of samples needed to obtain

the estimate Ê is Θ( 1
cϵ 2 · log( 1

δ
)) via a standard Chernoff-bound argument. In our applications, we

will take ϵ = 1/poly(N ) where N is the problem-size, and the error ϵ will only impact lower-order
terms in our approximations.

We adapt the above simulation-based attenuation technique to our setting. Let x
∗ denote an

optimal solution to LP (1). Suppose we aim to develop an online algorithm achieving a ratio of
γ ∈ [0, 1]. In particular, for every edge e ∈ E, we want to ensure that the Pr[e is matched ] ≥ γ .
Consider an assignment e = (u,v ) when some v arrived at time t . Let SFe,t be the event that e is
safe at t , i.e.,u is available at t . Using Monte-Carlo simulations, we obtain an approximate estimate
βe,t of the quantity Pr[SFe,t ]. Note that to obtain βe,t , we need the estimates βe,t ′ for every t ′ < t .

With the estimated quantity βe,t , we match a safe edge e at time t with probability
x ∗

e,t

pv,t

γ

βe,t
. This is

a valid probability (i.e., not exceeding 1), if and only if γ ≤ βe,t . We denote an algorithm ADAP(γ )
to be valid if and only if for every e ∈ E and every t ∈ [T ] we have γ ≤ βe,t .

When the condition γ ≤ βe,t is satisfied for all e ∈ E and t ∈ [T ], we have that the probability an
edge e = (u,v ) is matched conditioned on the event thatv arrives andu is available is at leastγx∗e,t .
Thus, using linearity of expectation this immediately implies that the expected reward obtained
by the algorithm is at least γ

∑
t ∈[T ]

∑
e ∈E wex

∗
e,t . Therefore, the competitive ratio is at least γ .

At the outset, this looks similar to the Inverse Propensity Scoring (IPS) used in the multi-
armed bandit literature [9]. However, there is a key difference between IPS estimates and our
estimates. In the bandit literature, one usually scales the value by the probability of playing an
action, since this is the cost of observing only bandit feedback. However, here we scale by a quantity
that depends on the probability of a certain event happening during the run of the algorithm,
because of playing other actions. The linear program gives a distribution over the edges assuming
that all the neighbors are available. Hence, this scaling can be interpreted as the cost the algorithm
needs to incur when some neighbors are already matched.

The simulation-based attenuation technique has been used previously for other problems, such
as stochastic knapsack [34] and stochastic matching [1]. Throughout the analysis, we assume that
we know the exact value of βe,t := Pr[SFe,t ] for all t and e . (It is easy to see that the sampling
error can be folded into a multiplicative factor of (1 − ϵ ) in the competitive ratio by standard
Chernoff bounds and hence, ignoring it leads to a cleaner presentation.) The formal statement of
our algorithm, denoted by ADAP(γ ), is as follows: For each v and t , let Ev,t be the set of safe

assignments for v at t .

ALGORITHM 1: A simulation-based adaptive algorithm ADAP(γ )

For each time t , let v denote the request arriving at time t .

If Ev,t = ∅, then reject v ; otherwise, choose e ∈ Ev,t with probability
x ∗

e,t

pv,t

γ
βe,t

where e = (u,v ).

4This is called “dumping factor” in Reference [1]. See Appendix B in Reference [1] for a formal treatment.
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Remarks. Our simulation-based adaptive algorithm described above is non-adaptive accord-
ing to our definition. Assume ADAP is valid with respect to a given γ ∈ (0, 1). We can first
solve the benchmark LP (1) and get an optimal solution {x∗e,t }e ∈E,t ∈[T ]. Then, by simulating the
random arrivals of online agents according to known distributions {pv,t }v ∈V ,t ∈[T ] and ADAP(γ )
itself sequentially from t = 1, 2, . . . ,T , we can get an arbitrarily accurate estimate of βe,t for each
e and t . All these procedures can be done in an offline manner (i.e., before the online process).

Lemma 5. ADAP(γ ) is a valid algorithm (i.e., γ ≤ βe,t for every e ∈ E and t ∈ [T ]) when γ = 1
2 .

Proof. Essentially, we need to show that βe,t ≥ γ = 1
2 for all e and t . We prove it by induction

on t as follows:
When t = 1, βe,t = 1 for all e = (u, ∗). Therefore, we are done. Assume for all t ′ < t , βe,t ′ ≥

1/2 and ADAP(γ ) is valid for all rounds t ′. In other words, we assume each e is assigned with
probability exactly equal to x∗e,t ′ ·

1
2 for all t ′ < t . Now consider a given e = (u,v ). Observe that e

is unsafe at t iff u is assigned with some v ′ at t ′ < t such that the assignment e ′ = (u,v ′) makes u
unavailable at t . Therefore,

1 − βe,t = 1 − Pr[SFe,t ] =
∑
t ′<t

∑
e ∈Eu

x∗e,t ′

2
Pr[Ce > t − t ′] ≤ 1

2
.

The last inequality above is due to Constraint (3) in the benchmark LP (1). Therefore, we have
βe,t ≥ 1/2 and we are done. �

The main Theorem 1 follows directly from Lemmas 4 and 5.

Extension from Ce to Ce,t . Consider the case when the occupation time of u from e is sensitive
to t . In other words, each u will be unavailable forCe,t rounds from the assignment e = (u,v ) at t .
We can accommodate the extension by simply updating the constraints (3) on u in the benchmark
LP (1) to the following. We have that ∀u ∈ U , t ∈ [T ],

∑
t ′<t

∑
e ∈Eu

xe,t ′ Pr[Ce,t ′ > t − t ′] +
∑

e ∈Eu

xe,t ≤ 1. (5)

The rest of our algorithm remains the same as before. We can verify that (1) LP (1) with con-
straints (3) replaced by Equation (5) is a valid benchmark; (2) ADAP achieves a competitive ratio
of 1

2 − ϵ for any given ϵ > 0 for the new model based on the new valid benchmark LP. The mod-
ifications to the analysis transfer through in a straightforward way and for brevity we omit the
details here.

4 TIGHTNESS OF ONLINE ANALYSIS AGAINST THE BENCHMARK LP

In this section, we prove the main result as stated in Theorem 2. Consider the following example:

Example 1. Consider a star graph G = (U ,V ,E), where U consists of one single node u and V =
{v1,v2}. Set T = N + 1. For j = 1, 2 and t ∈ [T ], let pj,t denote the arrival probability of the vertex

of type vj at time t . For t = 1, p11 = 1 and p21 = 0. For 2 ≤ t ≤ T , p1,t = 0 and p2,t = 1/N . In other

words, with probability 1 − 1/N , no vertex will arrive (or we can assume a dummy node will arrive)

during round t ≥ 2. Let w1 � w (u,v1 ) = 1 − 1/N and w2 � w (u,v2 ) = 1. For C1 � C (u,v1 ) , it takes

value of T and 1 with respective probabilities 1 − 1/N and 1/N . For C2 � C (u,v2 ) , it takes the value 1
with probability 1.

Lemma 6. The benchmark LP (1) has an optimal value of 2 − 1/N on Example 1.
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Proof. For ease of exposition, let xt and yt denote the probabilities that e = (u,v1) and e =
(u,v2) get chosen at time t in any offline optimal, respectively. Thus, the updated benchmark LP
is as follows:

maximize
∑

t ∈[T ]

(1 − 1/N )xt +
∑

t ∈[T ]

yt (6)

s.t. x1 ≤ 1,y1 ≤ 0 (7)

xt ≤ 0,yt ≤ 1/N ∀t ≥ 2 (8)

x1 (1 − 1/N ) + yt ≤ 1 ∀t ≥ 2 (9)

0 ≤ xt ,yt ≤ 1 ∀t ∈ [T ]. (10)

We can verfiy that the optimal solution to the above LP is as follows: x1 = 1 and yt = 1/N for all
t ≥ 2, all the rest are zeros. Therefore, the optimal value is (1−1/N )+ (1/N ) · (T −1) = 2−1/N . �

Lemma 7. The optimal (adaptive) online algorithm has an expected performance of 1 + 1/N on

Example 1.

Proof. Let ALG be an optimal online algorithm and suppose that it matches the edge e = (u,v1)
with probabilityα ∈ [0, 1] at t = 1. Let E[ALG] be the expected total weight of all matches achieved
by ALG. Thus,

E[ALG] = α
(
1 + (1/N ) · (1/N ) · N

)
+ (1 − α ) · (1/N ) · N = 1 + α/N .

Thus, the optimal online algorithm will choose α = 1 and the resultant expected performance
is 1 + 1/N . �

Proof of Theorem 2.

Proof. Combining the two lemmas above, we see that the optimal algorithm can achieve a
competitive ratio of (1 + 1/N )/(2 − 1/N ) on Example 1 w.r.t. to benchmark LP (1). This completes
the proof. �

4.1 The Special Case of Deterministic Ce Being a Constant

Consider a complete bipartite graph G = (U ,V ,E) where |U | = K , |V | = n2. Suppose we have
T = n rounds and pv,t =

1
n2 for each v and t . In other words, in each round t , each v is sampled

uniformly from V . For each e , let Ce be deterministically equal to K , which implies that each u
will be unavailable for a constant K rounds after each assignment. Assume all assignments have
a uniform weight (i.e., we = 1 for all e). Split the whole online process of n rounds into n − K + 1
consecutive windowsW = {W� } such thatW� = {�, �+1, . . . , �+K −1} for each 1 ≤ � ≤ n−K +1.
The benchmark LP (1) then reduces to the following:

max
∑

t ∈[T ]

∑
e ∈E

xe,t (11)

s.t.
∑

e ∈Ev

xe,t ≤
1

n2
∀v ∈ V , t ∈ [T ] (12)

∑
t ∈W�

∑
e ∈Eu

xe,t ≤ 1 ∀u ∈ U , 1 ≤ � ≤ n − K + 1 (13)

0 ≤ xe,t ≤ 1 ∀e ∈ E, t ∈ [T ]. (14)
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We can verify that an optimal solution to the above LP is as follows: x∗e,t = 1/(n2K ) for all e and t
with the optimal objective value of n. We investigate the performance of any optimal non-adaptive
algorithm. Notice that the expected arrivals of any v in the full sequence of online arrivals is 1/n.
Thus, for any non-adaptive algorithm NADAP, it needs to specify the allocation distribution Dv

for each v during the first arrival. Consider a given NADAP parameterized by {αu,v ∈ [0, 1]} for
each v and u ∈ Ev such that

∑
u ∈Ev

αu,v ≤ 1 for each v . In other words, NADAP will assign v to u
with probability αu,v when v comes for the first time and u is available.

Let βu =
∑

v ∈Eu
αu,v ∗ 1

n2 , which is the probability that u is matched in each round if it is safe
at the beginning of that round, when running NADAP. Hence,

∑
u ∈U

βu =
∑
u ∈U

∑
v ∈Eu

αu,v ·
1

n2
=
∑
v ∈V

∑
u ∈Ev

αu,v ·
1

n2
≤ 1.

Consider a given u with βu and let γu,t be the probability that u is available at t . Then, the
expected number of matches ofu after then rounds is

∑
t βuγu,t . We have the recursive inequalities

on γu,t as in Lemma 8, with γu,t = 1, t = 1.

Lemma 8. ∀1 < t ≤ n, we have

γu,t + βu

∑
t−K+1≤t ′<t

γu,t ′ = 1.

Proof. The inequality for t = 1 is due to the fact that u is safe at t = 1. For each time t > 1,
let SFu,t be the event that u is safe at t and Au,t be the event that u is matched at t . Observe that
for each window of K time slots, {SFu,t ,Au,t ′, t − K + 1 ≤ t ′ < t } are mutually exclusive and
collectively exhaustive events. Therefore,

1 = Pr[SFu,t ] +
∑

t−K+1≤t ′<t

Pr[Au,t ′]

= γu,t + βu

∑
t−K+1≤t ′<t

γu,t ′ . �

Note that the OPT of our benchmark LP is n while the performance of NADAP is
∑

u

∑
t βuγu,t .

The resulting competitive ratio achieved by an optimal NADAP is captured by the following max-
imization problem:

max

∑
u

∑
t βuγu,t

n
(15)

s.t.
∑
u ∈U

βu ≤ 1 (16)

γu,t + βu

∑
t−K+1≤t ′<t

γu,t ′ = 1 ∀1 < t ≤ n,u ∈ U (17)

βu ≥ 0,γu,1 = 1 ∀u ∈ U . (18)

We prove the following Lemma that implies Theorem 3:

Lemma 9. The optimal value of the program (15) is at most 1
2−1/K

+ K/n.

Proof. Focus on a given vertex u ∈ U . Notice that γu,t + βu
∑

t−K+1≤t ′<t γu,t ′ = 1 for all 1 ≤
t ≤ n. Summing both sides over t ∈ [n], we have the following:(

1 + βu (K − 1)
) ∑

t ∈[n]

γu,t = n + βu (K − 1)γu,n + βu (K − 2)γu,n−1 + · · · + βuγu,n−K+2

≤ n + K − 1.
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Therefore, we have,

∑
t ∈[n]

γu,t ≤
n

1 + βu (K − 1)
+

K − 1

1 + βu (K − 1)
≤ n

1 + βu (K − 1)
+

1

βu
.

Define Hu �
∑

t βuγu,t . From the above analysis, we have that Hu ≤ nβu

1+βu (K−1) + 1. Thus, the

objective value in the program (15) can be upper-bounded as follows:
∑

u

∑
t βuγu,t

n
=
∑
u ∈U

Hu

n
≤
∑
u ∈U

βu

1 + βu (K − 1)
+
K

n
.

We claim that the optimal value to the program (15) can be upper bounded by the following
maximization program:

⎧⎪⎪⎨
⎪⎪
⎩

max
∑

u ∈[U ]

βu

1 + βu (K − 1)
+
K

n
:
∑
u ∈U

βu = 1, βu ≥ 0,∀u ∈ U
⎫⎪⎪⎬
⎪⎪
⎭
.

According to our assumption K = o(n), the second term can be ignored. Let д(x ) = x/(1 +
x (K − 1)). For any K ≥ 2, it is a concave function, which implies that maximization of д subject to∑

u βu = 1 will be achieved when all βu = 1/K . The resultant value is 1
2−1/K

+ o(1). Thus, we are

done. �

Hardness against the ex-post optimal solution. Here, we show a hardness result against the
ex-post optimal solution. Manshadi et al. [36] prove that for the online-matching problem under
known IID distributions (but disposable offline vertices), no algorithm can achieve a ratio better
than 0.823. Since our setting generalizes this, their hardness result directly applies to our problem
as well. It is worth noting that the gap between the LP relaxation (1) and the ex-post optimal
solution is currently unknown. Thus, either the hardness result can be improved or the algorithm
can use a tighter relaxation of the offline optimal solution.

5 EXPERIMENTS

To validate the approaches presented in this article, we use the New York City Yellow Cabs dataset,5

which contains the trip records for trips in Manhattan, Brooklyn, and Queens for the year 2013. The
dataset is split into 12 months. For each month, we have numerous records each corresponding to
a single trip. Each record has the following structure: We have an anonymized license number that
is the primary key corresponding to a car. For privacy purposes, a long string is used as opposed
to the actual license number. We then have the time at which the trip was initiated, the time at
which the trip ended, and the total time of the trip in seconds. This is followed by the starting
coordinates (i.e., latitude and longitude) of the trip and the destination coordinates of the trip.

Assumptions. We make two assumptions specific to our experimental setup: First, we assume
that every car starts and ends at the same location for all trips that it makes. Initially, we assign
every car a location (potentially the same) that corresponds to its docking position. On receiving
a request, the car leaves from this docking position to the point of pick-up, executes the trip, and
returns to this docking position. Second, we assume that occupation time distributions (OTD)

associated with all matches are identically (and independently) distributed, i.e., {Ce } follow the
same distribution. Note that this is a much stronger assumption than what we made in the model

5http://www.andresmh.com/nyctaxitrips/.
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and is completely inspired by the dataset (see Section 5.2). We test our model on two specific dis-
tributions, namely, a normal distribution and a power-law distribution (see Figure 5). The docking
position of each car and parameters associated with each distribution are all learned from the
training dataset (described below in the Training discussion).

5.1 Experimental Setup

For our experimental setup, we randomly select 30 cabs (each cab is denoted by u). We discretize
the Manhattan map into cells such that each cell is approximately 4 miles (increments of 0.15
degrees in latitude and longitude). For each pair of locations, say, (a,b), we create a request type

v , which represents all trips with starting and ending locations falling into a and b, respectively.
In our model, we have |U | = 30 and |V | ≈ 550 (variations depending on day to day requests with
low variance). We focus on the month of January 2013. We split the records into 31 parts, each
corresponding to a day of January. We choose a random set of 12 parts for training purposes and
use the remaining for testing purposes.

The edge weight we on e = (u,v ) (i.e., edge from a car u to type v) is set as a function of two
distances in our setup. The first is the trip distance (i.e., the distance from the starting location to the
ending location of v , denoted L1) while the second is the docking distance (i.e., the distance from
the docking position of u to the starting/ending location of v , denoted L2). We set we = max(L1 −
αL2, 0), where α is a parameter capturing the subtle balance between the positive contribution
from the trip distance and negative contribution from the docking distance to the final profit. We
set α = 0.5 for the experiments. We consider each single day as the time horizon and set the total
number of roundsT = 24∗60

5 = 288 by discretizing the 24-hour period into a time-step of 5 minutes.
Throughout this section, we use time-step and round interchangeably.

Training. We use the training dataset of 12 days to learn various parameters. As for the arrival
rates {pv,t }, we count the total number of appearances of each request type v at time-step t in the
12 parts (denote it by cv,t ) and set pv,t = cv,t/12 under KAD (note that cv,t is at most 12 and hence
this value is always less than 1). When assuming KIID, we set pv = pv,t = (cv/12)/T where we
have cv =

∑
t ∈[T ] cv,t (i.e., the arrival distributions are assumed the same across all the time-steps

for each v). The estimation of parameters for the two different occupation time distributions are
processed as follows: We first compute the average number of seconds between two requests in
the dataset (note this was 5 minutes in the experimental setup). We then assume that each time-

step of our online process corresponds to a time difference of this average in seconds. We then
compute the sample mean and sample variance of the trip lengths (as number of seconds taken
by the trip divided by 5 minutes) in the 12 parts. Hence, we use the normal distribution obtained
by this sample mean and standard deviation as the distribution with which a car is unavailable.
We assign the docking position of each car to the location (in the discretized space) in which the
majority of the requests were initiated (i.e., starting location of a request) and matched to this car.

5.2 Justifying the Two Important Model Assumptions

Known Adversarial Distributions. Figure 4 plots the number of arrivals of a particular type
at various times during the day. Notice the significant increase in the number of requests in the
middle of the day as opposed to the mornings and nights. This justified our arrival assumption
of KAD that assumes different arrival distributions at different time-steps. Hence, the LP (and the
corresponding algorithm) can exploit this vast difference in the arrival rates and potentially obtain
improved results compared to the assumption of Known Identical Independent Distributions

(KIID). This is confirmed by our experimental results shown in Figures 1 and 2.
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Fig. 1. OTD is normal distribution under KIID. Fig. 2. OTD is normal distribution under KAD.

Fig. 3. OTD is power law distribution under KAD. Fig. 4. The number of requests of a given type at

various time-steps. x-axis: time-step, y-aixs: number

of requests.

Identical-occupation-time Distribution. We assume each car will be available again via an
independent and identical random process regardless of the matches it received. The validity of our
assumptions can be seen in Figures 5 and 6, where the x-axis represents the different occupation
time and the y-axis represents the corresponding number of requests in the dataset responsible
for each occupation time. It is clear that for most requests the occupation time is around two to
three time-steps and dropping drastically beyond that with a long tail. Figure 6 displays occupation
times for two representative (we chose two out of the many cars we plotted, at random) cars in
the dataset; we see that the distributions roughly coincide with each other, suggesting that such
distributions can be learned from historical data and used as a guide for future matches.

5.3 Results

Inspired by the experimental setup by References [55, 56], we run five different algorithms on our
dataset. The first algorithm is the ALG-LP. In this algorithm, when a request v arrives, we choose
a neighbor u with probability x∗e,t/pv,t with e = (u,v ) if u is available. Here, x∗e,t is an optimal
solution to our benchmark LP and pv,t is the arrival rate of type v at time-step t . The second
algorithm is called ALG-SC-LP. Recall that Ev,t is the set of “safe” or available assignments with
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Fig. 5. Occupation time distribution of all cars. x-axis:

number of time-steps, y-axis: number of requests.

Fig. 6. Occupation time distribution of two different

cars. x-axis: number of time-steps, y-axis: number of

requests.

respect to v when the type v arrives at t . Let xv,t =
∑

e ∈Ev,t
x∗e,t . In ALG-SC-LP, we sample a safe

assignment for v with probability x∗e,t/xv,t . The next two algorithms are heuristics oblivious to
the underlying LP. Our third algorithm is called GREEDY, which is as follows: When a request
v comes, match it to the safe neighbor u with the highest edge weight. Our fourth algorithm is
called UR-ALG, which chooses one of the safe neighbors uniformly at random. Finally, we use a
combination of LP-oblivious algorithm and LP-based algorithm called ϵ-GREEDY. In this algorithm
when a type v comes, with probability ϵ , we use the greedy choice and with probability 1 − ϵ , we
use the optimal LP choice. In our algorithm, we optimized the value of ϵ and set it to ϵ = 0.1.
We summarize our results in the following plots: Figures 1, 2, and 3 show the performance of the
five algorithms and OPT (optimal value of the benchmark LP) under the different assumptions of
the OTD (normal or power law) and online arrives (KIID or KAD). In all three figures, the x-axis
represents test dataset number and the y-axis represents average weight of matching.

Discussion. From the figures, it is clear that both the LP-based solutions, namely, ALG-LP and
ALG-SC-LP, do better than choosing a free neighbor uniformly at random. Additionally, with dis-
tributional assumptions the LP-based solutions outperform greedy algorithm as well. We would
like to draw attention to a few interesting details in these results. First, compared to the LP optimal
solution, our LP-based algorithms have a competitive ratio in the range of 0.5 to 0.7. We believe
this is because of our experimental setup. In particular, we have that the rates are high (> 0.1) only
in a few time-steps, while in all other time-steps the rates are very close to 0. This means that it
resembles the structure of the theoretical worst-case example we showed in Section 4. In future ex-
periments, running our algorithms during peak periods (where the request rates are significantly
larger than 0) may show that competitive ratios in those cases approach 1. Second, it is surprising
that our algorithm is fairly robust to the actual distributional assumption we made. In particular,
from Figures 2 and 3 it is clear that the difference between the assumption of normal distribution
versus power-law distribution for the unavailability of cars is negligible. This is important, since
it might not be easy to learn the exact distribution in many cases (e.g., cases where the sample
complexity is high), and this shows that a close approximation will still be as good.

Simulation-based algorithm. We omit the results of the simulation-based algorithm, since the
performance was similar to the algorithm without the scaling (i.e., ALG-LP). Here, we briefly
describe the implementation details on performing the simulations efficiently in practice. The
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estimates are computed even before the start of the algorithm. We first simulate the entire se-
quence of T requests, δ times. Using these δ samples, we first compute the estimates for the first
time-step. We now re-use the same δ samples and the computed estimates in the first time-step to
obtain the estimates for the second time-step. Hence in a sequential manner, we compute estimates
at time t using the samples from time-steps 1, 2, . . . , t − 1. The overall runtime of this implementa-
tion isO (δT +δTκ), where κ denotes the running time of ADAP in every time-step. Hence during
the online phase, the running time of ADAP is same as that of ALG-LP.

6 CONCLUSION AND FUTURE DIRECTIONS

In this work, we provide a model that captures the application of assignment in ride-sharing plat-
forms. One key aspect in our model is to consider the reusable aspect of the offline resources.
This helps in modeling many other important applications where agents enter and leave the sys-
tem multiple times (e.g., organ allocation, crowdsourcing markets [27]). Our work opens several
important research directions. The first direction is to generalize the online model to the batch set-
ting (e.g., this subsequent work ). In other words, in each round, we assume multiple arrivals from
V . This assumption is useful in crowdsourcing markets (for example) where multiple tasks—but
not all—become available at some time. The second direction is to consider a Markov model on the
driver starting position. In this work, we assumed that each driver returns to her docking position.
However, in many ride-sharing systems, drivers start a new trip from the position of the last drop-
off. This leads to a Markovian system on the offline types, as opposed to the assumed static types
in the present work. Finally, pairing our current work with more-applied stochastic-optimization
and reinforcement-learning approaches would be of practical interest to policymakers running
taxi and bikeshare services [23, 31, 45, 51, 57]. Following the initial conference publication of this
article, subsequent work has appeared that addresses some of the aforementioned directions. The
multi-capacitated version of the problem in the batch setting was studied in Reference [32], where
the authors devise an algorithm that has a competitive ratio of 0.317. Driver-rider matching in
rideshare was modeled as a Markovian system [18]; they show that under a practical condition
this system convergences to the stationary distribution very fast. The unweighted multi-capacity
version of the problem considered in this article under the adversarial arrival model was studied
in Reference [25]. They proved an optimal competitive ratio 1 − 1/e improving over the ratio of
1/2 proved in References [22, 48].
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