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Abstract
Kidney exchanges are organized markets where pa-
tients swap willing but incompatible donors. In the
last decade, kidney exchanges grew from small and
regional to large and national—and soon, interna-
tional. This growth results in more lives saved,
but exacerbates the empirical hardness of the NP-
complete problem of optimally matching patients
to donors. State-of-the-art matching engines use in-
teger programming techniques to clear fielded kid-
ney exchanges, but these methods must be tailored
to specific models and objective functions, and may
fail to scale to larger exchanges. In this paper,
we observe that if the kidney exchange compati-
bility graph can be encoded by a constant number
of patient and donor attributes, the clearing prob-
lem is solvable in polynomial time. We give neces-
sary and sufficient conditions for losslessly shrink-
ing the representation of an arbitrary compatibility
graph. Then, using real compatibility graphs from
the UNOS nationwide kidney exchange, we show
how many attributes are needed to encode real com-
patibility graphs. The experiments show that, in-
deed, small numbers of attributes suffice.

1 Introduction
There are over 100,000 needy patients waiting for a kid-
ney transplant in the United States, with similar—and
increasing—demand worldwide.1 Complementing poten-
tial cadaveric transplantation via the deceased donor waiting
list, a recent innovation—kidney exchange [Rapaport, 1986;
Roth et al., 2004]—allows patients with willing living donors
to participate in cyclic donor swaps or altruist-initiated dona-
tion chains to receive a life-saving organ. Kidney exchange
now accounts for roughly 10% of living donation in the US,
with that percentage increasing every year.

In reality, participating patients and donors are endowed
with a set of attributes: blood type, tissue type, age, insur-
ance, home transplant center, willingness to travel, and myr-
iad other measurements of health, personal preference, and
logistical constraint. While some of these features can, at a

1
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cost, be temporarily or permanently changed, the attributes
determine the feasibility of a potential donation from each
donor to each patient. As a concrete example, a donor with
blood type AB can only give to a patient with that blood type.

A central aspect of kidney exchange is the clearing prob-
lem, that is, determining the “best” set of cyclic and chain-
based swaps to perform in a given compatibility graph, which
consists of all participating patients, donors, and their po-
tential feasible transactions. For even simple (but realistic)
models of kidney exchange, the clearing problem is NP-
hard [Abraham et al., 2007; Biró et al., 2009] and also ex-
tremely difficult to solve in practice [Glorie et al., 2014;
Anderson et al., 2015; Plaut et al., 2016].

In this paper, we tackle the complexity of the clearing
problem via the introduction of a novel model for kidney ex-
change that explicitly takes into account all attributes of the
participating patients and donors. Under the assumption that
real kidney exchange graphs can be represented using just a
constant number of attributes, we show that our model per-
mits polynomial-time solutions to centralNP-hard problems
in general kidney exchange. Inspired by classical results from
intersection graph theory, we give conditions on the repre-
sentation of arbitrary graphs in our model, and generalize to
the case where participants are allowed to have a thresholded
number of negative interactions between attributes. Noting
that real-life kidney exchange graphs are not arbitrary, we
show on actual data from the United Network for Organ Shar-
ing (UNOS) US-wide kidney exchange that our model per-
mits lossless representation of true graphs with far fewer at-
tributes than the worst-case theoretical results require.

2 A New Model for Kidney Exchange
In this section, we formalize our model of kidney exchange.
We prove that under this model certain well-knownNP-hard
problems in general kidney exchange are solvable in polyno-
mial time. We also show that, given a compatibility graph,
determining the best set of attributes to change (at some cost)
is solvable in polynomial time.

2.1 Notation & Preliminaries
A kidney exchange can be represented by a directed com-
patibility graph G = (V,E). Each patient-donor pair,
or unpaired altruistic donor, forms a vertex v ∈ V , and
a directed edge exists from one vertex to another if the
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donor at the former can give to the patient at the latter,
i.e., are compatible [Roth et al., 2004; Roth et al., 2005a;
Roth et al., 2005b].

In kidney exchange, patients and donors participate in
cycles or chains. In a cycle, each participating vertex re-
ceives the kidney of the previous vertex. All transplants in
a cycle must be performed simultaneously to ensure partici-
pation, and thus are limited to some small length in practice.
This ensures that no donor backs out after her patient has re-
ceived a kidney but before she has donated her kidney. Most
fielded kidney exchanges—including UNOS—allow only 2-
and 3-cycles. In a chain, a donor without a paired patient en-
ters the pool, donating his kidney to a patient, whose paired
donor donates his kidney to another patient, and so on [Mont-
gomery et al., 2006; Roth et al., 2006; Rees et al., 2009].
Chains can be executed non-simultaneously2 and thus chains
can be longer (but typically not infinite) in length. Most
exchanges—including UNOS—see great gains through the
use of such “altruist-initiated” chains.

We consider a model that imposes additional structure on
an arbitrary compatibility graph. For each vertex vi ∈ V , as-
sociate with its constituent donor and patient attribute vectors
di and pi, respectively. Here, the qth element dqi of di takes
on one of a fixed number of types—for example, one of four
blood types (O, A, B, AB), or one of a few hundred standard
insurance plans. Then, for vi 6= vj ∈ V , we define a compat-
ibility function f(di,pj), a boolean function that returns the
compatibility of the donor of vi with the patient of vj .

Given V and associated attribute vectors, we can
uniquely determine a compatibility graph G = (V,E) such
that E = {(vi, vj) : f(di,pj) = 1 ∀vi 6= vj ∈ V }. We
claim that this model accurately mimics reality, and we later
support that claim with strong experimental results on real-
world data. Furthermore, under this new model, certain com-
plexity results central to kidney exchange change (for the bet-
ter), as we discuss next.

2.2 The Clearing Problem is Easy (in Theory)
We now tackle the central computational challenge of kid-
ney exchange: the clearing problem. Well-known to be NP-
hard [Abraham et al., 2007; Biró et al., 2009], a variety of
custom clearing algorithms address adaptations of the clear-
ing problem in practice.3 We show that, in our model, the
clearing problem itself is solvable in polynomial time.

Formally, we are interested in a polynomial-time algo-
rithm that solves the L-CYCLE-COVER problem—that is,
finding the largest disjoint packing of cycles of length at most
L. For ease of exposition, in this section we use “cycles” to
refer to both cycles and chains; indeed, it is easy to see that
altruist donors are equivalent to standard patient-donor pairs
with a patient who is compatible with all non-altruist vertices
in the pool. Then, a chain is equivalent to a cycle with a

2To see why this is, take the case where a donor backs out of a
chain after his paired patient received a kidney, but before his own
donation. Unlike in the case of a broken cycle, no pair in the remain-
ing tail of the planned chain is strictly worse off; that is, no donor
was “used up” before her paired patient received a kidney.

3For an overview of practical approaches to solving the clearing
problem, see a recent survey due to Mak-Hau [2015].

“dummy” edge returning to the altruist. Also, again for ease
of exposition, we assume the value of a chain of length L is
equal to a cycle of length L, due to the donor at the end of the
chain giving to a patient on the deceased donor waiting list.

Recall that we are working in a model where each vertex
vi belongs to one of a fixed number of types determined solely
by its attribute vectors di and pi. Let Θ be the set of all
possible types, and θ ∈ Θ represent one such individual type.
Then, with a slight abuse of notation, we can define a type
compatibility function f(θ, θ′) = 1 if and only if there is a
directed edge between vertices of type θ and θ′. (Note that
this captures chains and altruist donors as described above.)

A key observation of this section is that any additional
edge structure that is imposed on the graph—such as a cycle
cover—would be independent of the identity of specific ver-
tices, rather, it would only depend on their types, as vertices
of the same type have the exact same incoming and outgoing
neighborhoods. For example, in any cycle cover, if vi and vj
are two vertices of the same type, we can insert vj in place of
vi, and vi in place of vj , and obtain a feasible cycle cover of
the same size. This observation drives our theoretical algo-
rithmic results.

In more detail, for a vector of types θ = (θ1, . . . , θk) ∈
Θk, let us denote fC(θ) = 1 if and only if f(θt, θt+1) = 1
for all t < k, and f(θk, θ1) = 1. In other words, fC(θ) = 1
if every k vertices i1, . . . , ik of types θ1, . . . , θk, respectively,
are involved in a cycle in the graph. Furthermore, for L ≤
n = |V |, denote

T (L) = {θ ∈ Θk : k ≤ L and fC(θ) = 1}.
That is, T (L) contains all vectors of types that induce feasible
cycles of length at most L.

Now consider the following algorithm for L-CYCLE-
COVER in our model:

Algorithm 1 L-CYCLE-COVER

1. C∗ ← ∅
2. for every collection of numbers {mθ}θ∈T (L) such that∑

θ∈T (L)mθ ≤ n
• if there exists cycle cover C such that ‖C‖V > ‖C∗‖V

and for all θ ∈ T (L), C contains mθ cycles consist-
ing of vertices of the types in θ then C∗ ← C

3. return C∗

Here, ‖C‖V denotes the number of unique vertices
matched in a cycle cover C. We claim that, in our setting,
Algorithm 1 is optimal and computationally efficient.

Theorem 1. Suppose that L and |Θ| are constants. Then
Algorithm 1 is a polynomial-time algorithm for L-CYCLE-
COVER.

Proof. We start by verifying that Algorithm 1 is indeed op-
timal. Consider the optimal cycle cover C∗. For each θ ∈
T (L), let m∗θ be the number of cycles in C∗ that are consis-
tent with the types in θ. Clearly

∑
θ∈T (L)m

∗
θ ≤ n, as there

are only n vertices so there cannot be more than n cycles (in



fact, n/2 is also a valid upper bound). Therefore, Algorithm 1
considers the collection of numbers m∗θ in Step 2. Because
this collection of numbers does induce a valid cycle cover
that is of the same size as C∗, the algorithm would update its
incumbent cycle cover if it was not already optimal.

We next analyze the running time of the algorithm. First,
note that it is straightforward to check whether the numbers
{mθ}θ∈T (L) induce a valid cycle cover. Since T (L) consists
only of valid cycles according to the compatibility function
fC , we just need to check that there are enough vertices of
type θ to construct all the cycles that require them. This sim-
ply amounts to multiplying each mθ by the number of times
type θ appears in θ, and verifying that the sum of these prod-
ucts over all θ in T (L) is at most the number of vertices of
type θ.

Second, we argue that there is only a polynomial num-
ber of possibilities to construct a collection of numbers
{mθ}θ∈T (L) such that

∑
θ∈T (L)mθ ≤ n. Indeed, this num-

ber is at most (n+1)|T (L)|. Moreover, |T (L)| ≤ L·|Θ|L. Be-
cause |Θ| and L are constants, |T (L)| is also a constant. The
expression (n+ 1)|T (L)| is therefore a polynomial in n.

Even for constant L, the running time of Algorithm 1
is exponential in k. But this is to be expected. Indeed, any
graph can trivially be represented using a set Θ of types of
size n, where each vertex has a unique type, and a compati-
bility function fC that assigns 1 to an ordered pair of types if
the corresponding edge exists in G. Therefore, if the running
time of Algorithm 1 were polynomial in n and k, we could
solve the general L-CYCLE-COVER problem in polynomial
time—and that problem is NP-hard [Abraham et al., 2007].

2.3 Flipping Attributes is Also Easy (in Theory)
While patients and donors in a kidney exchange are endowed
with an initial set of attributes, it may be possible in prac-
tice to—at a cost—change some number of those attributes
to effect change in the final matching. For example, the hu-
man body naturally tries to reject, to varying degrees, a trans-
planted organ. Due to this, nearly all recipients of kidneys
are placed on immunosuppressant drugs after transplantation
occurs.4 However, preoperative immunosuppression can also
be performed to increase transplant opportunity—but at some
cost to the patient’s overall health.

With this in mind, we extend the model of Section 2.2 as
follows. Associate with each pair of types θ, θ′ ∈ Θ a cost
function c : Θ × Θ → R representing the cost of chang-
ing a vertex of type θ to type θ′. Then, the L-FLIP-AND-
CYCLE-COVER problem is to find a disjoint packing of cy-
cles of length at most L that maximizes the size of the pack-
ing minus the sum of costs spent changing types. Building on
Theorem 1, this problem is also solvable in polynomial time.

Theorem 2. Suppose that L and |Θ| are constants. Then L-
FLIP-AND-CYCLE-COVER is solvable in polynomial-time.

Proof sketch. For any type θi ∈ Θ, there are ni vertices.
Then, for each of the (|Θ| − 1) choices of which type θ 6= θi
to switch to, choose how many vertices from θi will switch to
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a different type; there are (ni+ 1) choices. Do this for all |Θ|
types, resulting in

∏
θi∈Θ[(ni+1)(|Θ|−1)] choices. Note that∑

θi∈Θ(ni + 1) = n+ |Θ|, meaning
∏
θi∈Θ[(ni + 1)(|Θ| −

1)] ≤ ((n + |Θ|) · (|Θ| − 1)/|Θ|)|Θ| ≤ (n + |Θ|)|Θ|. Since
|Θ| is a constant, this is polynomial in n; invoking an adap-
tation of the polynomial time Algorithm 1 that subtracts out
c(θ, θ′) for every vertex that switches from θ to θ′, for each
of the polynomially-many choices, concludes the proof.

3 A Concrete Instantiation: Thresholding
As motivated in Sections 1 and 2, compatibility in real kid-
ney exchange graphs is determined by patient and donor at-
tributes, such as blood or tissue type. In particular, if an at-
tribute for a donor and patient is in conflict, they are deemed
incompatible. Motivated by that reality, in this section, we
associate with each patient and donor a bit vector of length
k, and count incompatibilities based on any shared activated
bits between a patient and potential donor.

As a concrete example, consider human blood types. At
a high level, human blood contains A antigens, B antigens,
both (type AB), or neither (type O). AB-type patients can
receive from any donor, A-type (B-type) can receive from
O-type and A-type (B-type) donors, and O-type patients can
only receive from O-type donors. In our bit model, this is rep-
resented with k = 2, such that a donor’s first (resp. second)
bit is set if his blood holds A (resp. B) antigens. and a pa-
tient’s first (resp. second) bit is set if she cannot receive from
blood containing A (resp. B) antigens. Thus, the type space
Θ = 2{has-A,has-B} × 2{no-A,no-B}; in general, |Θ| = 22k.

Formally, unless otherwise stated, throughout this sec-
tion G will refer to a directed graph with vertex set V =
[n] := {1, . . . , n} and edge set E, and with each i ∈ V
associated with two k-bit vectors di,pi ∈ {0, 1}k. Let
Qd(i) = {q ∈ [k] : diq = 1} be the set of conflict bits
for the donor associated with vertex i ∈ V , and similarly let
Qp(i) = {q ∈ [k] : piq = 1}. For i, j ∈ V such that i 6= j,
the threshold feasibility function f tthresh is defined as

f tthresh(di,pj) =

{
1 if |Qd(i) ∩Qp(j)| ≤ t,
0 otherwise.

.

Note that |Qd(i) ∩Qp(j)| ≤ t if and only if 〈di,pj〉 ≤ t.
Kidney exchange graphs constructed using threshold

compatibility functions are closely related to complements
of intersection graphs [McKee and McMorris, 1999], which
are graphs that have a set associated with each vertex and
an edge between two vertices if and only if the sets in-
tersect. Given a nonnegative integer t, the function f tthresh
is related to p-intersection graphs [Chung and West, 1994;
Eaton et al., 1996], in which an edge exists between two ver-
tices if their corresponding sets intersect in at least p ≥ 1
elements.

In particular, our model is similar to that of intersection
digraphs [Sen et al., 1989], or equivalently bipartite intersec-
tion graphs [Harary et al., 1982], both also considered in [Or-
lin, 1977]. Both of these have mainly been studied under the
assumption that the sets used to represent the graph have the
“consecutive ones” property, i.e., each set is an interval from
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the set of integers. Our model is more general: we do not
place such an assumption on the set of conflict bits. More-
over, most treatments of intersection digraphs consider loops
on the vertices, whereas in the thresholding model we have
defined, whether or not donor i and patient i are compatible
is not considered. In addition, the directed and bipartite inter-
section graph literature has focused on the case that t = 0 (in
our terminology). To the best of our knowledge, this paper is
the first treatment p-intersection digraphs, and certainly their
first real-world application.

3.1 Existence of Small Representations
It is natural to ask for what values of t and k can we select
vertices with bit vectors di and pi of length k such that f tthresh
can create any graph of a specific size?

Formally, we say that G is (k, t)-representable (by fea-
sibility function f tthresh) if, for all i ∈ V there exist di,pi ∈
{0, 1}k such that for all j1 ∈ V , j2 ∈ V \ {j1}, (j1, j2) ∈ E
if and only if f tthresh(dj1 ,pj2) = 1.

It is known [Erdős et al., 1966] that any graph can be rep-
resented as an intersection graph with k ≤ n2/4. In contrast,
the next theorem shows that, in our model, k ≤ n suffices to
represent any graph. It is akin to a result on the term rank of
the adjacency matrix of G [Orlin, 1977, Theorem 6.6].
Theorem 3. Let G = (V,E) be a digraph on n vertices.
Let n1 be the number of vertices with outgoing edges, Let
n2 be the number of vertices with incoming edges, and n′ =
min{n1 + 1, n2 + 1, n}. Then G can be (n′, 0)-represented.

Proof. We first show that the graph can be (n1 + 1, 0)-
represented. Assume without loss of generality that ver-
tices 1, . . . , n1 have outgoing edges. We show how to set
di,pi ∈ {0, 1}n1+1 for each vertex i in V . To set the donor
attributes, for each i ∈ [n1], let di be ei, the ith standard ba-
sis vector, i.e., the vector of length n1 + 1 with a 1 in the ith
coordinate and 0 everywhere else. For i > n1, set di to be
en1+1. For the patient attributes of vertex j ∈ [n], for each
i ∈ [n] such that (i, j) ∈ E, set pji = 0, and set pji = 1
otherwise. Note that if all the vertices have outgoing edges,
then n1 = n unit vectors suffice. A similar approach works to
(min{n, n2 +1}, 0)-representG, by using the n2 unit vectors
as the patient vectors of those vertices with incoming edges,
and (if needed) one additional unit vector for any remaining
vertices. In both of these cases, 〈di,pj〉 = 0 if and only if
(i, j) ∈ E, which represents G by f0

thresh.

In particular, Theorem 3 implies that any graph is (n, 0)-
representable. The next theorem shows a matching lower
bound. The same construction and bound also hold if loops
are considered [Sen et al., 1989].
Theorem 4. For any n ≥ 3, there exists a graph on n vertices
that is not (k, 0)-representable for all k < n.

Proof. Define G to be the digraph on n vertices, V = [n],
with an edge from vertex i, for each i ∈ V , to every vertex
except i− 1 (and itself), where vertex n is also referred to as
vertex 0.

Assume that G is (k, 0)-representable, and consider ver-
tex 1. Since (1, n) /∈ E, and (i, n) ∈ E for all i /∈ {1, n},

there exists a conflict bit q1 ∈ Qd(1) ∩ Qp(n) such that
q1 /∈ Qp(V \ {1, n}). More generally, there exists such a
conflict bit qi for all i ∈ V .

We claim that these conflict bits are all unique, which
directly implies that k ≥ n. Indeed, otherwise we can assume
that q1 = qi for some i 6= 1 (without loss of generality, as the
graph is symmetric subject to cyclic permutations). But then
(1, i− 1) and (i, n) do not appear as edges in G, which is not
true for any i ∈ V \ {1}.

More generally, it is easy to see that any graph that is
(k, 0)-representable is also (k+t, t)-representable for any t ≥
0. Indeed, simply take the (k, 0)-representation of the graph,
and append t ones to every vector. Together with Theorem 3,
this shows that any graph is (n+t, t)-representable. However,
the lower bound given by Theorem 4 does not extend to t > 0.
We conjecture that for any n and t there exists a graph that
can only be (k, t)-represented with k = Ω(n)—this remains
an open question.

3.2 Computational Issues
Given any real compatibility graph with n vertices, we know
by Theorem 3 that we can (k, 0)-represent that graph for k =
n. But, in practice, how large of a k do we actually need?

Various problems related to intersection graphs areNP-
complete for general graphs [Kou et al., 1978; Orlin, 1977],
but we work in a setting with additional structure. And while
we do not show that finding a (k, t)-representation is NP-
hard, we do show that a slightly harder problem, which we
refer to as (k, t)-REPRESENTATION WITH IGNORED EDGES,
is NP-hard. Given an input of a directed graph G = (V,E),
a subset F of

(
V
2

)
, and integers k ≥ 1 and t ≥ 0, this problem

asks whether there exist bit vectors di and pi of length k for
each i ∈ V such that for any (i, j) ∈ F , we have (i, j) ∈ E
if and only if 〈di,pj〉 ≤ t.
Theorem 5. The (k, t)-REPRESENTATION WITH IGNORED
EDGES problem is NP-complete.

The theorem’s nontrivial proof is omitted due to lack of
space.5 Here we give a proof sketch. One major idea is
the construction of a bit-grounding gadget Gk—a subgraph
where the bits are set uniquely (up to permutations) in any
valid representation, and can be used to set the bits in other
vertices. The gadget has

(
k
2

)
vertices; we prove that there

is a unique (up to permutations) (k, 1)-representation of Gk,
where each donor vector has a unique pair of ones, and simi-
larly for each patient vector. Figure 5 shows G4.

Then, we prove NP-hardness by reduction from 3SAT.
In the constructed instance of our problem, we set the thresh-
old to 1. The crux of the reduction is to add a vertex for each
clause in the given 3SAT formula, where in the patient vec-
tor, the bit corresponding to each literal in the clause is set
to 1. This can be done by connecting the vertex to the bit-
grounding gadget. Moreover, there is a special vertex that
does not have outgoing edges to any of the clause vertices.
This means that it must have a 1 in a position that corresponds
to one of the literals in each clause. A different part of the

5The complete proof is given in Appendix A.



construction ensures that there is at most a single 1 in the two
positions corresponding to a variable and its negation. There-
fore, a valid assignment of the donor bits corresponds to a
satisfying assignment for the 3SAT formula.

1

2

3

4

1

d1 : 1100
p1 : 1010

2

d2 : 1010
p2 : 1001

3
d3 : 1001
p3 : 0110

4

d4 : 0110
p4 : 0101

5

d5 : 0101
p5 : 0011

6
d6 : 0011
p6 : 1100

Figure 1: Gadget G4 with a subset of non-edges shown; all
edges between circle vertices (those in G2

4) are also not in E.

4 Computing Small Representations of Real
Kidney Exchange Compatibility Graphs

In this section, we test our hypothesis that real compatibility
graphs can be represented by a substantially smaller number
of attributes than required by the worst-case theoretical re-
sults of Section 3. We begin by presenting general mathemat-
ical programming techniques to determine, given k, t ∈ Z,
whether a specific graph G = (V,E) is (k, t)-representable.
We then show on real and generated compatibility graphs
from the UNOS US-wide kidney exchange that small k suf-
fices for (k, 0)-representation, and conclude by exploring the
allowance of greater thresholds t on match size. We find even
small thresholds t > 0 result in substantial societal gain.6

4.1 Mathematical Programming Formulations
Implementation of f tthresh can be written succinctly as a
quadratically-constrained discrete feasibility program (QCP)
with 2k|V | binary decision variables, given as M1 below.

〈di,pj〉 ≤ t ∀(vi, vj) ∈ E
〈di,pj〉 ≥ (t+ 1) ∀(vi, vj) 6∈ E
di,pi ∈ {0, 1}k ∀vi ∈ V

(M1)

The constraint matrix for this program is not positive
semi-definite, and thus the problem is not convex. Ex-
ploratory use of heuristic search via state-of-the-art integer
nonlinear solvers [Bonami et al., 2008] resulted in poor per-
formance (in terms of runtime and solution quality) on even
small graphs. With that in mind, and motivated by the pres-
ence of substantially more mature integer linear program
(ILP) solvers, we linearize M1, presented as M2 below.

6All code for this section can be found at https://github.
com/JohnDickerson/KidneyExchange.

min
∑

vi∈V

∑
vj 6=vi∈V ξij

s.t. dqi ≥ c
q
ij ∧ p

q
j ≥ c

q
ij ∀vi 6= vj ∈ V, q ∈ [k]

dqi + pqj ≤ 1 + cqij ∀vi 6= vj ∈ V, q ∈ [k]∑
q c

q
ij ≤ t+ (k − t)ξij ∀(vi, vj) ∈ E∑
q c

q
ij ≥ (t+ 1)ξij ∀(vi, vj) ∈ E∑

q c
q
ij ≥ t+ 1− kξij ∀(vi, vj) 6∈ E∑

q c
q
ij ≤ k − (k − t)ξij ∀(vi, vj) 6∈ E

dqi , p
q
i ∈ {0, 1} ∀vi ∈ V, q ∈ [k]

cqij , ξij ∈ {0, 1} ∀vi 6= vj ∈ V, q ∈ [k]

(M2)

M2 generalizes M1; while M1 searches for a feasible so-
lution to the (k, t)-representation problem, M2 searches for
the “best” (possibly partially-incorrect) solution by minimiz-
ing the total number of edges that exist in the solution but not
in the base graph G, or do not exist in the solution but do
in G. This flexibility may be desirable in practice to strike a
tradeoff between small k and accuracy of representation.

Interestingly, neither the fully general ILP nor its
(smaller) instantiations for the special cases of feasibility
and/or threshold t = 0 were solvable by a leading commercial
ILP solver [IBM ILOG Inc, 2015] within 12 hours for even
small graphs, primarily due to the model’s loose LP relax-
ation. Indeed, the model we are solving is inherently logical,
which is known to cause such problems in traditional mathe-
matical programming [Hooker, 2002]. With that in mind, we
note that the special case of t = 0 can be represented com-
pactly as a satisfiability (SAT) problem in conjunctive normal
form, given below as M3.∧

q∈[k]

(¬dqi ∨ ¬p
q
j) ∀(vi, vj) ∈ E

(z1ij ∨ z2ij ∨ . . . ∨ zkij) ∧∧
q∈[k]

[
(¬zqij ∨ d

q
i ) ∧ (¬zqij ∨ p

q
j)
] ∀(vi, vj) 6∈ E

(M3)

This formulation maintains two sets of clauses: the first
set enforces no bit-wise conflicts for edges in the underlying
graph, while the second set enforces at least one conflict via
k auxiliary variables z·ij for each possible edge (vi, vj) 6∈
E. M3 was amenable to parallel SAT solving [Biere, 2014].
Next, we present results on real graphs using this formulation.

4.2 (k, 0)-representations of Real Kidney
Exchange Graphs

Can real kidney exchange graphs be represented by a small
number of attributes? To answer that question, we begin by
testing on real match run data from the first two years of
the United Network for Organ Sharing (UNOS) kidney ex-
change, which now contains 143 transplant centers, that is,
60% of all transplant centers in the US. We translate each
compatibility graph into a CNF-SAT formulation according
to M3, and feed that into a SAT solver [Biere, 2014] with
access to 16GB of RAM, 4 cores, and 60 minutes of wall
time. (Timeouts are counted—conservatively against our pa-
per’s qualitative message—as negative answers.)

Figure 2 shows a classical phase transition from un-
satisfiability to satisfiability as k increases as a fraction of
graph size, as well as an associated substantial increase
in computational intractability centered around that phase
transition. This phenomenon is common to many central
problems in artificial intelligence [Cheeseman et al., 1991;

https://github.com/JohnDickerson/KidneyExchange
https://github.com/JohnDickerson/KidneyExchange


Hogg et al., 1996; Walsh, 2011]. Indeed, we see that substan-
tially fewer than |V | attributes are required to represent real
graphs; compare with the lower bound of Theorem 4.
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Figure 2: Classical hardness spike near the phase transition
for (k, 0)-representation on real UNOS compatibility graphs.

Figure 3 explores the minimum k required to represent
each graph as a function of |V |, compared against the theo-
retical upper bound of k = |V |. The shaded area represents
those values of k where the SAT solver timed out; thus, the
reported values of k are a conservative upper bound on the re-
quired minimum, which is still substantially lower than |V |.
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Figure 3: Comparison of number of bits (y-axis) required to
(k, 0)-represent real UNOS compatibility graphs of varying
sizes (x-axis). The theoretical bound of k = |V | is shown
in red; it is substantially higher than the conservative upper
bound of k solved by our SAT solver (upper dotted line).

4.3 Thresholding Effects on Matching Size
One motivation of this work is to provide a principled ba-
sis for optimally “flipping bits” of participants (via, e.g., im-
munosuppresion) in fielded kidney exchanges, in the hope
that additional edges in the compatibility graph will result in
gains in the final algorithmic matchings. We now explore this
line of reasoning—that is, increasing the t in f tthresh instead of
the k, which is now endogenous to the underlying model—on
realistic generated UNOS graphs of varying sizes.

Figure 4 shows the effect on the percentage of patient-
donor pairs matched by 2- and 3-cycles as a global threshold
t is raised incrementally from t = 0 (the current status quo)
to t = 5. Intuitively, larger compatibility graphs result in a
higher fraction of pairs being matched; however, a comple-
mentary approach—making the graph denser via even small
increases in t—also results in tremendous efficiency gains of

3–4x (depending on |V |) over the baseline for t = 1, and
quickly increasing to all pairs being matched by t = 5.
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Figure 4: Pairs matched (%, y-axis) in generated UNOS
graphs of varying sizes (lines), as t increases (x-axis).

We note that any optimal matching found after increas-
ing a global threshold t could also be created by paying to
change at most t bits per vertex in a graph; however, the prac-
tical selection of the minimum-sized set of at most t bits per
vertex such that the size of the resulting optimal matching is
equal to that found under the global threshold of t is a dif-
ficult two-stage problem and is left as future research. The
large efficiency gains realized by moving from f0

thresh to even
f1

thresh motivate this direction of research.

5 Conclusions & Future Research
Motivated by the increasing size of real-world kidney ex-
changes, in this paper, we presented a compact approach to
modeling kidney exchange compatibility graphs. Our ap-
proach is intimately connected to classical intersection graph
theory, and can be viewed as the first exploration and practi-
cal application of p-intersection digraphs. We gave necessary
and sufficient conditions for losslessly shrinking the represen-
tation of an arbitrary compatibility graph in this model. Real
compatibility graphs, however, are not arbitrary, and are cre-
ated from characteristics of the patients and donors; using real
data from the UNOS US-wide kidney exchange, we showed
that using only a small number of attributes suffices to rep-
resent real graphs. This observation is of potential practical
importance; if real graphs can be represented by a constant
number of attributes, then central NP-hard problems in gen-
eral kidney exchange are solvable in polynomial time.

This paper only addresses the representation of static
compatibility graphs; in reality, exchanges are dynamic, with
patients and donors arriving and departing over time [Ünver,
2010]. Extending the proposed method to cover time-
evolving graphs is of independent theoretical interest, but
may also be useful in speeding up the (presently-intractable)
dynamic clearing problem [Awasthi and Sandholm, 2009;
Dickerson et al., 2012; Anderson, 2014; Dickerson and Sand-
holm, 2015; Glorie et al., 2015]. Better exact and approxi-
mate methods for computing (k, t)-representations of graphs
would likely be a prerequisite for that line of research. Fur-
thermore, adaptation of the theoretical results to alternate or-
gan models like lung [Ergin et al., 2014; Luo and Tang, 2015],
liver [Ergin et al., 2015], and multi-organ [Dickerson and
Sandholm, 2016] exchange would be of practical use.
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[Ünver, 2010] Utku Ünver. Dynamic kidney exchange. Rev Econ
Stud, 77(1):372–414, 2010.

[Walsh, 2011] Toby Walsh. Where are the hard manipulation prob-
lems? J Artif Intell Res, 42:1–29, 2011.



Appendix A: Omitted Proofs
In this section, we provide the full proof of Theorem 5. Recall
the (k, t)-REPRESENTATION WITH IGNORED EDGES: given
an input of a directed graph G = (V,E), a subset F of E,
and integers k ≥ 1 and t ≥ 0, this problem asks whether
there exist bit vectors di and pi of length k for each i ∈ V
such that the {i, j} ∈ F if and only if 〈di,pj〉 ≤ t.

Consider the gadget Gk defined as follows on a graph on(
k
2

)
+k vertices. LetG1

k be the graph defined in Theorem 4 on(
k
2

)
vertices, i.e., the complement of a directed cycle on this

many vertices. Associate with each vertex u ∈ G1
k a unique

element from
(

[k]
2

)
(all subsets of [k] of size 2). Let G2

k be
an independent set of k vertices. For each vertex i ∈ G2

k,
i ∈ [k], add an incoming edge into i from u ∈ G2

k if and only
if i ∈ Su. Figure 5 shows G4.

1

2

3

4

1

d1 : 1100
p1 : 1010

2

d2 : 1010
p2 : 1001

3
d3 : 1001
p3 : 0110

4

d4 : 0110
p4 : 0101

5

d5 : 0101
p5 : 0011

6
d6 : 0011
p6 : 1100

Figure 5: Gadget G4 with a subset of non-edges shown; all
edges between circle vertices (those in G2

4) are also not in E.

Denote the donor neighborhood of i ∈ V by Nd(i) =
{j ∈ V : (i, j) ∈ E, i 6= j}, i.e., the set of patients com-
patible with donor i. Similarly, the patient neighborhood of
j ∈ V is Np(j) = {i ∈ V : {i, j} ∈ E, i 6= j}.
Lemma 1. There is a unique (up to permutations) (k, 1)-
representation of Gk.

Proof. First consider G1
k. For all u ∈ V (G1

k), since {u, u −
1} /∈ E(G1

k), and the compatibility function is f1
thresh, there

exist two distinct conflict bits qu1 and qu2 inQd(u)∩Qp(u−1).
Moreover, for any u, v distinct, {qu1 , qu2 } 6= {qv1 , qv2}. Other-
wise, {qu1 , qu2 } ⊆ Qp(v − 1) and {qv1 , qv2} ⊆ Qp(u − 1), but
at least one of the edges {u, v−1} or {v, u−1} exists in G1

k.
In addition, |Qd(u)| = 2 for all u ∈ V (G1

k). Suppose
not, and there exists a third distinct (from qu1 and qu2 ) conflict
bit qu3 in Qd(u). As the number of vertices is

(
k
2

)
, there ex-

ists a vertex v1 with {qv11 , qv12 } = {qu1 , qu3 }, and a (different)
vertex v2 with {qv21 , qv22 } = {qu2 , qu3 }. Then {u, v1 − 1} and
{u, v2 − 1} are both not in E(G1

k). However, u has edges to
all vertices except itself and u − 1, which is a contradiction,

as u, v1, and v2 are all distinct. From this, it also follows that
|Qp(u)| = 2.

We have thus shown that every vertex u ∈ G1
k has exactly

two bits set to one in its donor attribute vector, with a unique
pair of bits per vertex, and Qd(u) = Qp(u − 1). However,
without more structure, it is not possible to tell in which donor
vectors a particular conflict bit appears. The additional graph
G2
k allows us to identify this, up to permutations.

Since there are no outgoing edges from any of the ver-
tices in G2

k, and every pair of bits in
(

[k]
2

)
appears in exactly

one patient vector of a vertex in G1
k, each donor vector in G2

k
must be the all-ones vector of length k.

Consider vertex i ∈ [k] in G2
k. It has an incoming edge

from each vertex u ∈ V (G1
k) such that i ∈ Su and it is

missing the
(
k−1

2

)
other possible incoming edges from G1

k
(note that the labeling of the vertices, as well as the choices
of the sets Su, are made without any knowledge of the bit-
vectors associated with the vertices). We next show that∣∣∩u∈Np(i)Qd(u)

∣∣ = 1. That this quantity is at most 1 is clear,
as Qd(u) and Qd(v) intersect in at most one conflict bit for
all u, v ∈ V (G1

k), u 6= v. If this quantity were 0, then for
some u, v ∈ Np(i), Qd(u) ∩ Qd(v) = ∅. But then at least
two zeroes would appear in Qp(i), which is a contradiction
as it implies that i would have more than k incoming edges.
Thus, the patient vector pi for i ∈ V (G2

k) has exactly one
zero and ones elsewhere. Moreover, since Np(i) 6= Np(j)
for any distinct i, j ∈ [k], it follows that pi 6= pj , so each
patient vector is distinct and the position of its only zero is
unique.

Lemma 2. Consider a digraph G having Gk as a subgraph
and an additional vertex x /∈ V (Gk). We use the compatibil-
ity function f1

thresh and seek to find a (k, 1)-representation for
the induced subgraph G[V (Gk) ∪ {x}]. Let U ⊆ V (G1

k)
having that property that if v ∈ V (G1

k) with Qd(v) ⊆
∪u∈UQd(u), then v ∈ U . Let U ′ = {u ∈ V (G1

k) : u + 1 ∈
U}. Let Q = ∪u∈UQd(u).

If Np(x) = V (Gk1) \ U , then Qp(x) = Q. If Nd(x) =
V (Gk1) \ U ′, then Qd(x) = Q.

Proof. We use the fact that there are exactly two bits set to
one in the donor and patient vectors of each vertex in Gk in
any (k, 1)-representation. For the first statement, since x has
no edge from u ∈ U , Qp(x) ⊇ Qd(u). Thus Qp(x) ⊇ Q.
Now let v ∈ V (G1

k) \ U and qv ∈ Qd(v) \ Q. If qv ∈
Qp(x), then for each q ∈ Q, there exists a vertex w in G1

k
with Qd(w) = {q, qv}, so that {w, x} would also not be an
edge of G, a contradiction. Hence, Qp(x) = Q. The second
statement follows analogously.

Theorem 5. The (k, t)-REPRESENTATION WITH IGNORED
EDGES problem is NP-complete.

Proof. Consider a 3SAT formula on n variables and with m
clauses. Set k = 2n + 2, and build the following graph on
2+n+m+

(
k
2

)
+k vertices. The first two vertices are labeled

v and u. Then there is a vertex vi for each variable i ∈ [n], a
vertex c for each clause c ∈ [m]. Call the subgraph induced



by these 2 + n+m vertices G′. The last vertices come from
the gadget Gk.

The vertices in G2
k ground the k bits used in each donor

and patient vector.. We think of the k bits, in order, as cor-
responding to the n positive literals, then their n negations,
followed by two “extra” bits. Then the index of literal xi will
be i, and the index of literal x̄i will be n + i. For i and j
distinct in V (G2

k), |Np(i) ∩Np(j)| = 1 within Gk. Denote
this vertex of G1

k by v(i, j), and without loss of generality we
can assume that Qd(v(i, j)) = {i, j}.

The edges among vertices in the induced subgraph Gk
are already defined; we define (a subset) of the rest of the
edges. Together, these comprise precisely the subset F of
the edges and non-edges specified as an input the instance
we are creating of (k, t)-REPRESENTATION WITH IGNORED
EDGES.

Vertex v has no incoming edges, and the only outgoing
edges from v to V (G′) are to every variable vertex vi,
i ∈ [n]. The rest of the vertices that are not in Gk have
no outgoing edges at all, to either V (G′) or V (Gk), and
the only incoming edges are from vertices of G1

k. Vertex
u has an incoming edge from every vertex of G1

k except
v(2n + 1, 2n + 2). For each variable vertex vi, i ∈ [n], it
has an incoming edge from every vertex in V (G1

k) except
v(i, n+ i). For each clause c ∈ [m], let {c1, c2, c3} be the in-
dices of the three literals that appear in c. Let C ⊂ V (G1

k) be
{v(c1, c2), v(c1, c3), v(c2, c3), v(c1, k), v(c2, k), v(c3, k)}.
Then the vertex corresponding to c has an incoming edge
from every vertex in V (G1

k) \ C.
Every vertex of V (G′) except for v will have a donor

vector with every bit set to one because there are no outgoing
edges to any vertex of G1

k, and v will have an all-ones pa-
tient vector because it has no incoming edges from G1

k. By
Lemma 2, in any (k, 1)-representation of G, vertex u will
have Qp(u) = {2n+ 1, 2n+ 2}. Variable vertex vi, i ∈ [n],
will have Qp(vi) = {i, n + i}. Clause vertex c ∈ [m] will
have Qp(c) = {c1, c2, c3, 2n+ 2}.

Since the graph does not have an edge from v to u, {2n+
1, 2n + 2} ⊆ Qd(v) (these are the only two conflict bits in
Qp(u) and the threshold is 1). Since the graph has an edge
from v to each variable vertex vi, i ∈ [n],Qd(v) must contain
at most one of the indices corresponding to the variable or its
negation (there are no conflicts from the extra bits, which are
set to 0 in the patient vector of vi). Since the graph does not
have an edge from v to any of the clause vertices, it has to
have at least one conflict bit in a position corresponding to
one of the three literals in the clause (the other conflict comes
from the extra bit 2n+ 2).

Thus, finding a suitable (k, 1)-representation that satis-
fies the adjacencies of edges that appear in F would involve
finding an appropriate set Qd(v), which we have shown cor-
responds to choosing at most one value for each xi, as well as
choosing at least one literal that appears in each clause. This
is the same as the problem of finding a satisfying formula for
the initial instance of 3SAT.

As an example, consider the 3SAT formula x1∨ x̄2∨x3.
Figure 6 shows the most relevant part of the graph used in
the reduction. One possible (k, 1)-representation may have
Qd(v) = {1, 7, 8}, indicating x1 = 1 and the rest of the

variables are arbitrary. Another example of a possible repre-
sentation is Qd(v) = {1, 3, 5, 7, 8}, meaning x1 = 1, x2 = 0
(index 5 appears), and x3 = 1.

v

c

u

v1

v2

v3

v(x1, x3) 10100000

v(x1, x̄2) 10001000

v(x3, x̄2) 00101000

v(x1, 8) 10000001

v(x3, 8) 00100001

v(x̄2, 8) 00001001

v(x1, x̄1) 10010000

v(x2, x̄2) 01001000

v(x3, x̄3) 00100100

v(7, 8) 00000011

Figure 6: Example of 3SAT reduction to (k, t)-
representation.
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