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Abstract

We propose a new architecture to approximately learn incentive compatible,
revenue-maximizing auctions from sampled valuations. Our architecture uses
the Sinkhorn algorithm to perform a differentiable bipartite matching which allows
the network to learn strategyproof revenue-maximizing mechanisms in settings not
learnable by the previous RegretNet architecture. In particular, our architecture
is able to learn mechanisms in settings without free disposal where each bidder
must be allocated exactly some number of items. In experiments, we show our
approach successfully recovers multiple known optimal mechanisms and high-
revenue, low-regret mechanisms in larger settings where the optimal mechanism is
unknown.

1 Introduction

Auctions have been held for millennia, since at least Classical antiquity [29], and have played an
important complementary role to set-price sales and bargaining to exchange goods. In recent decades,
the advent of computation has resulted in a surge of large-scale fielded auctions in a variety of
important industries, such as broadcasting [31], advertising [15], electricity markets [9], and many
others [35, 46]. These developments have made auctions not only of theoretical interest, but also of
great practical importance.

Auction design is the problem faced by an auctioneer who, given uncertain knowledge of the demands
of auction participants, wishes to set the rules of the auction to ensure, via proper incentive structure,
a desirable outcome. In the usual theoretical model of auctions [38], the bidders have some private
valuation of the items, but the distribution from which these valuations are drawn is common
knowledge. The auctioneer solicits bids from participants, awards the items up for sale to the winners,
and charges some amount of money to each. Bidders may, however, choose to strategically lie
about their valuation given their knowledge of the auction rules and anticipated behavior of other
participants, resulting in a Bayes-Nash equilibrium which may be very hard for the auction designer
to predict.

To avoid this problem, an auctioneer may simply wish to design a strategyproof (or truthful) mech-
anism in which participants are incentivized to truthfully reveal their valuations. The distribution
of bids is then simply the valuation distribution itself, so it becomes easy to predict the results of
the auction in expectation. While satisfying the strategyproofness constraint, the auctioneer can
additionally optimize total utility, their own revenue, or other desirable properties.

If the auctioneer’s goal is to maximize the welfare of all participants while maintaining strategyproof-
ness, the Vickrey-Clarke-Groves (VCG) mechanism always gives a solution [51, 7, 24]. By contrast,
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if the auctioneer wishes to maximize revenue, strategyproof mechanisms are much harder to find.
Some revenue-maximizing strategyproof mechanisms are known in limited cases: when selling
a single item, the Myerson auction is strategyproof and maximizes revenue [37], and for selling
multiple items to one agent, some results are known [13, 27, 40, 33]. But even for the simple case
of selling two items to two agents, there has been almost no progress, with the major exception of a
breakthrough for the special case where items take on at most two discrete valuations [55].

The theoretical difficulty of devising revenue-maximizing strategyproof auctions has resulted in
a number of attempts to approximate them. Recently, [14] presented a method, RegretNet, for
learning approximately incentive compatible mechanisms given samples from the bidder valuations.
They parameterize the auction as a neural network, and learn to maximize revenue, and maintain
strategyproofness, by gradient descent. This learning approach to auction design can replicate some
known-optimal auctions, and can learn good auctions in settings where the optimal auction is not
known. It has been extended in a variety of ways [10, 49, 21, 30, 18, 43, 44, 41].

The RegretNet architecture has architectural features to ensure that no item is over-allocated, and that
each bidder receives the correct amount of goods. This is accomplished through a combination of
softmax and minimum operations, depending on the exact bidder demand constraints.

However, this approach only works when some ad-hoc combination of these operations is sufficient
to enforce the constraints. This is not always possible. Consider the case where the auctioneer needs
to ensure that every participant receives exactly k items. This corresponds, for instance, to an offline
version of the “Display Ads” problem [17], without free disposal. Such equality constraints cannot
be enforced using the min-of-softmax approach.

We observe that an auction allocation for bidders whose utilities are linear functions of their valuations
amounts to a matching assigning items to bidders. Using this observation, we present an alternative
approach which explicitly applies matching constraints on the output, using the Sinkhorn algorithm
[11] to solve a discrete matching problem as part of an end-to-end differentiable architecture.

This approach is among the first attempts to use the techniques of differentiable optimization [1]
for learned mechanism design – concurrent work [32] uses a differentiable sorting operator to learn
generalized second-price auctions. By simply modifying the constraints in our matching problem,
our proposed approach can produce feasible allocations without changes to the overall network
architecture for many different bidder demand constraints. Our approach successfully recovers known
optimal mechanisms in multiple settings including settings (such as exactly-one-demand auctions) in
which RegretNet would be unable to guarantee that its output allocations adhere to the constraints.

2 Related Work

Auction Design and Learning Auction mechanisms are functions from bids to allocations and
payments; if one assumes sample access to the valuation distribution, it is natural to treat auction
design as a learning problem, and there has been much work in this area.

One thread of work has been learning-theoretic, determining the sample complexity for various
known families of auctions to estimate properties like revenue [5, 8, 36] or incentive compatibility
[4].

Another thread of work, sometimes called “differentiable economics”, represents auction mechanisms
using general parametric function approximators, and attempts to optimize them using gradient
descent. [14] introduce several neural network architectures to find revenue-maximizing auctions,
including RochetNet, which works for single-agent auctions and is strategyproof by constructions,
and RegretNet, which represents auctions as a general neural network and includes a term in the loss
function to enforce strategyproofness.

Further work has built directly on both RochetNet and RegretNet [30, 10, 43, 44]. Others have
taken a similar approach but applied to different mechanism design problems, including finding
welfare-maximizing auctions [49] and facility location [21]. Other applications of gradient-based
methods to problems in mechanism design include [25, 53].

Single-agent auction learning The case of selling multiple items to a single agent is reasonably
well understood. [45] gives a characterization of strategyproof single-agent mechanisms – their utility
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functions must be monotone and convex. Based on this characterization, [14] design RochetNet,
a network architecture for single-agent mechanism learning which is guaranteed to be perfectly
strategyproof. [48] also provide network architectures for the single-agent setting which can be made
strategyproof by construction. The authors of both works are able to learn mechanisms and then
prove them optimal using the theoretical framework of [13].

We wish to explicitly contrast these architectures with our own approach. In a single-agent setting,
they work better than a RegretNet-style architecture, and as mentioned can always guarantee perfect
strategyproofness. In this work, however, we focus on general architectures which can work in both
single- and multi-agent settings.

Optimal Transport and the Sinkhorn Algorithm Optimal transport [26] is the problem of mov-
ing one set of masses to another mass while minimizing some cost function. In its infinite dimensional
form, where it amounts to finding the cost-minimizing joint distribution between two marginal contin-
uous probability distributions, it has wide applications in pure mathematics [52] as well as machine
learning [3, 20]. Interestingly, [13, 27] use the mathematical tools of infinite-dimensional optimal
transport in the context of mechanism design theory.

Our work here is not directly related. By contrast, we the discrete form of optimal transport, which is
essentially a formulation of minimum cost bipartite matching (in our case, between agents and items).
This discrete problem can be numerically solved in a number of ways, see [42] for an overview. In
particular, we focus on the Sinkhorn algorithm [11]: a fast, GPU-parallelizable iterative method for
solving the entropy-regularized version of the optimal transport problem, which can be used as a
differentiable bipartite matching operation [34, 23, 50, 16, 12]. We use the Sinkhorn algorithm to
compute matchings between agents and items.

Differentiable optimization and deep learning Recently, there has been broad interest in mixing
convex optimization problems with deep learning. For many convex optimization problems, the
derivative of the optimal solution with respect to parameters of the objective or constraints is well
defined, so it is possible to define a neural network layer that will output a feasible, optimal solution
to some optimization problem. This is useful if one wants to use optimization with deep learning in a
“predict and optimize” pipeline [19, 54], to enforce that network outputs satisfy some constraints, or
if interesting operations can be formulated in terms of optimization problems [22].

One family of approaches [e.g., 1, 2] involves solving the convex optimization problem using standard
solvers, then using the implicit function theorem to compute the gradient for the backward pass. In a
contrasting approach, when using an iterative method to solve the optimization problem, it is also
possible to use automatic differentiation to simply backpropagate through the numerical operations
performed by the solver. We employ this latter approach with the aforementioned Sinkhorn algorithm
in order to compute feasible matchings in a differentiable manner

3 Differentiable Economics and Combinatorial Optimization

General auction setting We consider an auction setting with n bidders and m items. Each bidder
i has a private valuation function, vi : [0, 1]m → R≥0, that maps any subset of the items to a real
number. We assume that vi is drawn from a known distribution Fi, but the realized valuation vi
is private and unknown to the auctioneer. Each bidder i then submits their bids bi ∈ Rm. Let
b = (b1, b2, ..., bn) be the bids from all bidder. The auction mechanism is then a combination
of an allocation mechanism and payment mechanism, (g(b), p(b)). The g outputs an allocation
(g1, g2, ..., gn) where gij is the probability of allocating item j to bidder i. The payment mechanism
p outputs (p1, p2, ..., pn) where pi is how much bidder i is charged. Each bidder then receives some
utility ui(vi, b) = vi(gi(b))− pi(b).

Quasilinear utilities, strategyproofness, and individual rationality Allowing a distinct valua-
tion for every combination of items may result in a combinatorial explosion. A simplifying assumption
is that a bidder may have a single valuation for each item. Then their valuation vi is simply a vector
in Rm, and their utility is simply ui(vi, b) = 〈vi, gi(b)〉 − pi(b).
Since a bidder’s true valuation is private they are free to strategically report bids to maximize
their utility. Thus, a we require our mechanism to be strategyproof or dominant-strategy incen-
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tive compatible (DSIC), meaning each bidder’s utility is maximized by reporting truthfully i.e.
ui(vi, (vi, b−i)) ≥ ui(vi, (v

′
i, b−i) for any other v′i where b−i are all the bids except the ith bidder.

Regret is defined by the following equation: rgti(vi, b) = maxv′i ui(vi, (v
′
i, b−i)) − ui(vi, b), and

represents the utility the bidder could have gained from lying in their bid. We can then also say that
when a mechanism is DSIC, the regret for truthful bidding for bidder i should be 0 for every player i
with truthful valuation vi, for any opponent bids b−i.

Another desirable property for an auction for it to be (ex post) individually rational. This means
each bidder receives a non-negative utility from the auction i.e. ui(vi, (vi, b−i)) ≥ 0 for all bidders i,
all possible valuations vi, and all other bids b−i. Without this guarantee bidders might choose not to
participate in the auction at all because they are concerned about being left worse off than they were
before the auction.

3.1 Bidder Demand Types

Here we define common bidder demand constraints which are used in the experiments.

The value of a bundle of goods for a unit-demand bidder is equal to the maximum value of a
single item in the bundle: vi(S) = maxj∈S vi(j). In this sort of auction, there is no need to consider
allocations of more than one item to each bidder since those provide that same utility as only allocating
the most desirable item within that bundle to that bidder. Thus, by restricting allocations to allocate
at most one item per bidder, we can again treat bidder utility as quasilinear. More generally, there can
be k-unit-demand auctions where a bidder’s value of a bundle of goods is the sum of the top k items
in the bundle [56].

We also consider exactly-one demand, where each bidder must be assigned exactly one item. In
this setting, the bidder cannot be assigned more or fewer than one item and receives the value of the
assigned item. Additionally, this demand-type can be extended to a more general exactly-k demand
setting where each bidder must be allocated k items.

In all these settings, in general allocations might be randomized so that bidders can receive items with
different probabilities. This corresponds to allowing fractional allocations, so that in the unit-demand
and exactly-one-demand settings, the one item the bidder receives can be a mixture of fractions of
multiple items.

3.2 RegretNet

The RegretNet architecture consists of two neural networks, the allocation network (denote it g)
which outputs a matrix representing the allocation of each item to each agent and payment network
(denote it p) which outputs the payments for each bidder [14].

RegretNet guarantees individual rationality by making the payment network use a sigmoid activation,
outputting a value p̃ ∈ [0, 1]. The final payment is then

(∑
j vijgij

)
p̃, ensuring that the utility of

each bidder is non-negative.

[14] present network architectures to learn under additive, unit-demand and combinatorial valuations.
Their architecture utilizes a traditional feed-forward neural network with modifications in the output
layer to ensure a valid allocation matrix. In the additive setting, the allocation probabilities for each
item must be at most one: this is enforced by taking a row-wise softmax on the network outputs.
For unit-demand auctions, each bidder wants at most one item, so the network takes a row-wise
softmax of one matrix and a column-wise softmax of another to ensure item allocation is less than
one. The final output is then the elementwise min of these two, ensuring that both item allocation and
unit-demand constraints are enforced.

For training, the RegretNet architecture uses gradient descent on an augmented Lagrangian which
includes terms to maximize payment while also containing terms to enforce the constraint that regret
should be zero:

Lλ(v) = −
∑
i

pi(v) +
∑
i

λir̂gti(v) +
ρ

2

∑
i

(
r̂gti(v)

)2
(1)

Here r̂gti denotes an empirical estimate of regret produced by running gradient ascent on player
i’s portion of the network input to maximize their utility, computing their possible benefit from
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Items (with dummy)

agent demands

Feasible allocation matrix

Agent bids

Fully-connected allocation network
raw network outputs

gij

Fully-connected payment network

vij

pi

Sinkhorn

Figure 1: A schematic showing the Sinkhorn-based mechanism network. The agents’ bids (here,
assumed to be truthful) on each item act as input to a feedforward network, whose output is used
as the cost matrix Cij for the Sinkhorn algorithm. Marginals, specified separately, ensure that the
Sinkhorn output is a feasible allocation. The payment network charges a fraction of the value of items
that each agent wins.

strategically lying. During training, the Lagrange multipliers λ are gradually maximized, incentivizing
the minimization of regret.

4 Bipartite Matching for Auctions

The auction allocation problem is equivalent to finding a minimum-cost bipartite matching between
bidders and items, for some cost matrix. We solve this bipartite matching problem by formulating it
as an optimal transport problem. Using the Sinkhorn algorithm, we are able to solve this optimal
transport problem in an end-to-end differentiable way, yielding a valid matching that our network can
use to learn an optimal allocation mechanism.

4.1 Matching Linear Program

For marginal vectors a and b – here representing constraints for agents and items respectively, each
with a dummy component that represents no item or no agent – the optimal transport problem is as
follows.

min
P

n+1∑
i=1

m+1∑
j=1

PijCij s.t. P1m+1 = a, 1Tn+1P = b (2)

By specifying a and b, we can specify the demand constraints of the problem:

• k-demand: ai = k, an+1 = m, bj = 1, bm+1 = kn

• exactly-k-demand: ai = k, an+1 = m− kn, bj = 1, bm+1 = 0

Here the n+ 1 and m+ 1 values of the marginals represent the dummy agent and item respectively.
More complex constraints, such as different k for different agents, can also be accommodated. Also,
note in the exactly-k-demand settings there must be at least kn items, so m ≥ kn. An optimal
solution to the matching LP will always be a permutation matrix [6], or more generally on one of the
extreme points of the constraint set.

4.2 Entropy-Regularized Optimal Transport and the Sinkhorn Algorithm

The problem in Equation (2) can be solved as a linear program. However, [11] observed that by
adding an entropy penalty to the problem, it can be solved in a practical and scalable way using the
matrix-scaling Sinkhorn algorithm. The new objective of the problem is

min
P

N∑
i=1

M∑
j=1

PijCij + ε

N∑
i=1

M∑
j=1

Pij logPij
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Given marginals and a cost matrix, [11] provides an iterative algorithm to solve this problem. It can
be implemented in a variety of ways; we use the following stabilized log-domain updates [42]:

fi = −ε log

∑
j

exp

(
−Cij − gj

ε

)+ε loga, gj = −ε log

(∑
i

exp

(
−Cij − fi

ε

))
+ε log b

where Pi,j = efi/εe−Cij/εegj/ε. In addition to enabling the use of the iterative algorithm, the
regularization term makes the problem strongly convex. Thus, the derivative of the optimal solution
with respect to the cost matrix is well-defined. To approximate this derivative, we choose to unroll
several iterations of the Sinkhorn updates (which consist only of differentiable operations) and use
automatic differentiation.

The ε parameter controls the strength of the regularization. If it is large the output P will be nearly
uniform; as it goes to zero we recover the original problem and P will be a permutation matrix. For
our purposes, we set ε large enough to avoid vanishing gradients, but small enough that the output
allocations are still nearly permutation matrices.

4.3 Network Architecture

Our architecture, like RegretNet, uses a pair of networks to compute allocations and payments.
We denote the allocation and payment networks gw and pw respectively, where w are the network
weights.

The main distinction from RegretNet is in the allocation mechanism. Like RegretNet we utilize a
traditional feedforward neural network that takes all given bids as input. We use the output of the
network as the cost matrix Cij to the Sinkhorn algorithm (if there are dummy agents or items, they
receive cost 0). Marginals are specified separately depending on the problem setting.

Finally, the output of the Sinkhorn algorithm (after truncating the row and column for dummy
variables) provides the final probabilities gwij of allocating item j to bidder i.

As in RegretNet, the final payment for bidder i is
(∑

j vijgij

)
p̃wi where p̃wi ∈ [0, 1] is the ith output

from a feedforward payment network. This ensures that the mechanism is individually rational as the
bidders will never be charged more than their utility gained from the allocated items.

4.4 Settings That RegretNet Cannot Represent

RegretNet provides three different architectures depending on bidder demand type and valuation
functions. For its unit-demand and combinatorial architectures, it employs a “min-of-softmax”
approach to ensure both that agents receive at most 1 item or bundle, and items are not overallocated.

We particularly emphasize the case of exactly-k demand, which describes the situation where the
auction designer is obligated to ensure that every participant receives k items, no matter what they
bid. This captures, for instance, an offline version of the classic Display Ads setting [17], without free
disposal, where every ad buyer is contractually guaranteed a certain number of ad slots. For multiple
agents and multiple items, RegretNet cannot represent this demand type via the min-of-softmax
approach.

(In some special cases, ad-hoc changes could be made to the original RegretNet architecture to
support settings beyond additive and unit-demand. For example, to enforce “at-most-k” demand,
one can just scale the unit-demand outputs by a factor of k. In the special single-agent case, it is
possible to produce exactly-k demand by removing the dummy item which allows for the possibility
of allocating no item.)

By contrast, in multi-agent settings with exactly-k demand, the Sinkhorn-based architecture can
ensure feasible outputs by simply specifying the correct marginals. Our network architecture is also
independent of the demand type since only the marginals change rather than the entire network output
structure.

6



Algorithm 1 Sinkhorn allocation procedure

Input: Bid v ∈ Rm×n, allocation network output f(v; θ), marginals a ∈ Rn+1 and b ∈ Rm+1, Sinkhorn
epsilon schedule ε1, · · · , εT , tolerance t
Output: Feasible allocation matrix gij ∈ Rm×n

Initialize: f = 0n+1, g = 0m+1, C = f(v; θ)
for ε in ε0, · · · , εT do

Pij = efi/εe−Cij/εegj/ε

while maxi |
∑
j Pij − ai|/ai ≥ t do

fi = −ε log
(∑

j exp
(
−Cij−gj

ε

))
+ ε loga, gj = −ε log

(∑
i exp

(
−Cij−fi

ε

))
+ ε log b

Pij = efi/εe−Cij/εegj/ε

end while
end for
gij = Pij for i = 1..n, j = 1..m

4.5 Optimization and Training

Like RegretNet, our training objective is Equation (1). For each batch we estimate the empirical
regret, r̂gti(w) by performing gradient ascent for each bidder on the network inputs, approximating a
misreport for each bidder.

In our experiments, the network for both the payment and allocation network had 2 hidden layers of
128 nodes with Tanh activation functions, optimized using the Adam optimizer [28] with a learning
rate of 10−3. The training set consisted of 219 = 524, 288 valuation profiles. We used batch sizes of
4,096 and ran a total of 100 epochs. For each batch, we computed the best misreport using 25 loops
of gradient ascent with a learning rate 0.1. We also incremented ρ every two batches and and updated
the Lagrange multipliers, λ, every 100 batches. Experiments were all run on single 2080Ti GPUs, on
either a compute node or workstation with 32GB RAM, using PyTorch [39].

For evaluation, we used 1,000 testing examples and optimized the misreports of these examples for
1,000 iterations with learning rate 0.1. For each of the 1,000 samples we use ten random initialization
points for the misreport optimization and use the maximum regret from these. At both train and
test time we used the Sinkhorn algorithm with an ε parameter of 0.05, and a stopping criterion of a
relative tolerance of 0.01. Additionally we used an ε schedule (as suggested by [47, 12]) of 10 steps
from 1 down to the final value of 0.05. Pseudocode for computing the allocation network output is
given in algorithm 1.

5 Experiments

5.1 Optimal single-agent mechanisms

We start by recovering two known optimal mechanisms in the single bidder case. We emphasize
that if the only goal were to learn single-agent auctions, architectures such as RochetNet [14] or that
of [48] would work better. Our architecture works for both single-agent and multi-agent auctions.
Following previous work [14, 44, 43], we use these single-agent experiments as a test case to make
sure it recovers some known optimal mechanisms, before continuing on to multi-agent settings where
optimal auctions are not known and where RochetNet or [48] cannot work.

Unit-demand We first recover the optimal mechanism in the unit-demand single-agent two-item
setting with item values drawn from U [0, 1]. The optimal mechanism, also approximately recovered
in [14], is from [40]: it is to offer each good for a price of

√
3
3 . The learned allocation probabilities

are shown in Figure 2b with the boundary of the optimal analytic mechanism denoted by a dotted line.
The x and y axis are the valuation of the bidder for item one and two respectively. The color represents
the allocation probability output by the learned mechanism with the darker color corresponding to
higher probability. Quantitatively, the learned mechanism has small regret and slightly higher than
the optimal mechanism likely due to the small amount of regret.

Exactly-one demand The second optimal mechanism was a deterministic mechanism in the same
single agent, two-item setting with valuations on U [0, 1]. However, this time the agent will be
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(a) Exactly-One (b) Unit-Demand

Figure 2: Heatmaps of learned mechanisms for single-bidder two-item with v1, v2 ∼ U [0, 1] are
shown in (a)-(b). The optimal mechanism boundaries are the black dotted lines.

Setting Rev Regret Opt Rev Train Time

Unit-demand 0.397 (0.248) < 0.001 (< 0.001) 0.393 3h25m
RegretNet Unit-Demand 0.381 (0.258) < 0.001 (< 0.001) 0.393 18m34s

Exactly-one 0.079 (0.127) 0.001 (0.001) 0.069 1h21m
Table 1: Table of mean revenue and regret from learned mechanism in test set alongside revenue of
optimal mechanism for 1 agent, 2 items, with item valuations distributed independently on U [0, 1].

allocated exactly one item (instead of at most one). [27] shows that the optimal mechanism is to offer
one of the items for free or the other for a price of 1

3 .

The boundary of this optimal mechanism is shown in Figure 2a as the black dotted line. The revenue
in Figure 1 is slightly higher than the optimal, again likely due to the presence of small regret.

5.2 Multi-agent setting

We now experiment in settings where the optimal strategyproof mechanism is unknown. Specifically,
we study 2 bidders and either 3 or 15 items where valuations for each item are drawn from U [0, 1]. A
typical analytic baseline is a separate Myerson auction for each item, but this only works in additive
settings. Instead, as a baseline, we compute the revenue from an [51, 7, 24]. The VCG auction is
strategyproof, and maximizes welfare rather than revenue. It works by charging each bidder the harm
they cause to other bidders, which in the settings we test may be very small or even close to zero.
Table 2 contains the revenues for both mechanism (unsurprisingly higher for the learned auction) as
well as the average observed regret on the testing sample, while figures 3a and 3b show training plots
for the two agent, 3 item, exactly-one demand case.

5.3 Comparison To RegretNet

RegretNet is capable of representing unit-demand auctions, but not the exactly-one setting. We
compare performance to it in this case; results are shown in Table 2. (Runtimes are significantly
faster than those reported in [14] likely due to our much larger batch sizes.) For the one-agent,
two item setting, both architectures approximate the optimal mechanism so performance is similar.
Performance is also similar for the 2 agent, 3 item setting. In the 15-item setting, revenue with

(a) Mean revenue for exactly-one demand, 2 agent 3
item setting

(b) Mean empirical regret for exactly-one demand, 2
agent 3 item setting
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Setting Agents Items Rev Regret VCG Rev Time

Unit 2 3 .876 (.322) .001 (.001) .048 6h20m
RegretNet Unit 2 3 .878 (.337) < .001 (< .001) .048 20m28s

Unit 2 15 .886 (.113) .001 (< .001) .002 3h10m
RegretNet Unit 2 15 .999 (.123) < .001 (< .001) .002 25m45s

Exactly-1 2 3 .194 (.064) .004 (.008) .049 2h38m
RegretNet Exactly-1 2 3 N/A N/A .049 N/A

Exactly-1 2 15 .571 (.030) .003 (.015) .002 1h29m
RegretNet Exactly-1 2 15 N/A N/A .002 N/A

Table 2: Table of mean revenue and regret from learned mechanism in test set along with revenue
from VCG auction, for 2 agents with valuations distributed independently on U [0, 1]

the Sinkhorn architecture is somewhat smaller. In all cases the computational cost of RegretNet
is significantly lower, as it requires only two softmax operations instead of many iterations of the
Sinkhorn algorithm.

6 Strengths, Limitations, and Potential Impacts

Structurally, our architecture has the benefit of remaining the same for any quasi-linear bidder utilities
and constraints, with only the Sinkhorn marginals changing. The use of the Sinkhorn algorithm
allows us to enforce these constraints explicitly and even tackle new settings, such as exactly-k
demand, that the existing RegretNet architecture would be unable to handle.

Our Sinkhorn-based architecture has a higher computational cost than the comparable RegretNet
architecture, as the Sinkhorn algorithm requires many iterations. The Sinkhorn algorithm also requires
two additional hyperparameters, ε and a tolerance before the algorithm terminates.

We find that the ε parameter plays a crucial role in the training of the algorithm. If the ε is too small,
training fails, likely due to vanishing gradients. However, with too large of an ε the mechanism
becomes too smooth and unable to approximate the sharp boundaries that tend to show up in optimal
mechanisms leading to suboptimal revenue. (For further discussion of ε, see Appendix A in the
supplemental material.) Our architecture has an inductive bias towards deterministic allocations.
This may pose a limitation where revenue-maximizing mechanisms are nondeterministic, but it may
be an advantage if they are deterministic or if determinism is desirable. By setting ε small enough
it is possible to ensure near-determinism in allocations. However, because the mechanisms are
trained under a higher ε, there are regions where the price charged becomes too high, increasing
regret. Because training directly with small ε is difficult, we cannot directly guarantee that we train
deterministic mechanisms.

Following previous work that uses neural networks to approximate optimal auctions (including but
not limited to [14, 48, 44, 43]), we train on synthetic data. While in principle deep-learning-based
methods could be used to train on truthful bids from real-world bidders, and doing so would be
extremely interesting, such data is hard to come by. We see learned auctions as, at least in part, a
tool for pushing theory forward, so using synthetic data remains interesting when it is drawn from
valuation distributions for which analytic solutions have remained out of reach.

There are general ethical implications of revenue-maximizing auction design, in terms of potential
impact on bidders and society as a whole. For instance, making it easier for sellers to extract revenue
from bidders might be viewed as bad (if the bidders are thought of as ordinary consumers) or good (if
the auctioneer is selling a public resource to private entities). However, since our work is still closely
to the theoretical models discussed above, we do not see any direct ethical implications – it is very
unlikely that deep-learned auctions will be directly deployed in the near future.

7 Conclusion and Future Work

We have presented a new architecture for learned auctions which uses the Sinkhorn algorithm to
perform a differentiable matching operation to compute an allocation. Our architecture works for
a variety of bidder demand constraints by encoding them into the marginals used in the Sinkhorn
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algorithm. This new architecture allows the network to guarantee valid allocations in settings where
RegretNet could not.

We show that our approach successfully recovers optimal mechanisms in settings where optimal
mechanisms are known, and achieves good revenue and low regret in larger settings. Future work
might include extending the Sinkhorn architecture to more directly support randomized allocations,
further computational improvements, or further extensions to other mechanism design problems
where the allocation decision can be expressed as a matching.
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A Effect of Sinkhorn Epsilon

Effect of Sinkhorn ε Figures 4b and 4a highlights the effect of the Sinkhorn parameters on the final
mechanism. The lower the ε in the Sinkhorn algorithm the sharper the boundary becomes, as with less
entropy regularization, the optimal matching is closer to deterministic. However, we found that very
small values of epsilon led to problems during training; the learned mechanism would choose to never
allocate items, likely due to vanishing gradients. One can make an almost-perfectly-deterministic
mechanism by decreasing ε at test time, but this can increase regret as the learned payments no longer
agree with the allocations.

(a) ε = 0.05 (b) ε = 0.02

Figure 4: The following figures illustrate the effect of Sinkhorn temperature on allocation mechanism
(c) higher Sinkhorn ε value and (d) lower Sinkhorn ε value.
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