
Policy Analytics Generation Using Action
Probabilistic Logic Programs

Gerardo I. Simari, John P. Dickerson, Amy Sliva, and V.S. Subrahmanian

1 Introduction

Action probabilistic logic programs (ap-programs for short) [15] are a class of the
extensively studied family of probabilistic logic programs [14,21,22]. ap-programs
have been used extensively to model and reason about the behavior of groups and an
application for reasoning about terror groups based on ap-programs has users from
over 12 US government entities [10]. ap-programs use a two sorted logic where
there are “state” predicate symbols and “action” predicate symbols1 and can be
used to represent behaviors of arbitrary entities (ranging from users of web sites
to institutional investors in the finance sector to corporate behavior) because they

1Action atoms only represent the fact that an action is taken, and not the action itself; we assume
that effects and preconditions are generally not known.

G.I. Simari (�)
Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
e-mail: gerardo.simari@cs.ox.ac.uk

J.P. Dickerson
Gates-Hillman Center, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
e-mail: dickerson@cs.cmu.edu

A. Sliva
College of Computer and Information Science, Northeastern University,
Boston, MA 02115, USA
e-mail: asliva@ccs.neu.edu

V.S. Subrahmanian
Department of Computer Science, University of Maryland College Park,
College Park, MD 20742, USA
e-mail: vs@cs.umd.edu

V.S. Subrahmanian (ed.), Handbook of Computational Approaches to Counterterrorism,
DOI 10.1007/978-1-4614-5311-6 23,
© Springer ScienceCBusiness Media New York 2013

515

516 G.I. Simari et al.

r1.clashCas(jk, 1) : [0.85,0.91] ← socStrife(pak, 1) ∧ allianceNSAG(1).
r2.clashCas(jk, 1) : [0,0.03] ← socStrife(pak, 0) ∧ allianceNSAG(0).
r3.clashCas(jk, 1) : [0.42,0.48] ← socStrife(pak, 0) ∧ allianceNSAG(1).
r4.murder(jk, 1) : [0.52,0.58] ← trainCamp(pak, 1) ∧ relOrg(1).
r5.murder(jk, 1) : [0,0.03] ← trainCamp(pak, 0) ∧ relOrg(0).
r6.murder(jk, 1) : [0.20,0.26] ← trainCamp(pak, 0) ∧ relOrg(1).
r7.fedayeenAtt(jk, 1) : [0.59,0.65] ← govMilSupp(pak, 1) ∧ relOrg(1).
r8.fedayeenAtt(jk, 1) : [0,0.03] ← govMilSupp(pak, 0) ∧ relOrg(0).
r9.fedayeenAtt(jk, 1) : [0.22,0.28] ← govMilSupp(pak, 0) ∧ relOrg(1).

Fig. 1 A small set of rules modeling Lashkar-e-Taiba

consist of rules of the form “if a conjunction C of atoms is true in a given state S ,
then entity E (the entity whose behavior is being modeled) will take action A with a
probability in the interval Œ`; u�.”

In such applications, it is essential to avoid making probabilistic independence
assumptions, since the approach involves finding out what probabilistic relation-
ships exist and then exploiting these findings in the forecasting effort. For instance,
Fig. 1 shows a small set of rules automatically extracted from data gathered in the
Computational Modeling of Terrorism (CMOT) project2 about Lashkar-e-Taiba’s
past (referred to from now on as LeT), where predicates correspond to rules in the
data set and in general a value of 0 indicates that the action is not performed or
the condition does not hold.3 Rule 1 says that LeT engages in clashes in Jammu
and Kashmir (J&K, from now on), inflicting casualties in security forces (action
clashCas), with probability between 0.85 and 0.91 whenever there is social
strife in Pakistan (condition socStrife), and LeT engages in alliances with non-
state armed groups (condition allianceNSAG1). Rules 2 and 3, also about such
clashes, refer to the probabilities when these conditions are slightly altered. The rest
of the rules refer to murders committed in J&K, and Fedayeen attacks carried out
in J&K, involving the following conditions: trainCamp, which means that LeT
maintains training camps; relOrg, referring to the condition of LeT as a religious
group, and govMilSupp, referring to the Pakistani government giving military
support. ap-programs have been extensively (and successively) used by terrorism
analysts to make predictions about terror group actions [10, 19]. The analysis of
LeT from which these rules were taken is described in depth in [20].

Suppose, rather than predicting what action(s) a group would take in a given
situation or environment, we want to determine what we can do in order to induce a
given behavior by the group. For example, a policy maker might want to understand
what we can do so that a given goal (e.g., the probability of LeT engaging in clashes
causing casualties is below some percentage) is achieved, given some constraints
on what is feasible. The basic abductive query answering problem (BAQA) deals

2http://www.umiacs.umd.edu/research/LCCD/projects/let.jsp
3 Note that variables can have more than two possible values; therefore, even though murder(1)
is equivalent to :murder(0) because murder is a binary variable, this does not hold in general.

http://www.umiacs.umd.edu/research/LCCD/projects/let.jsp

Policy Analytics Generation Using Action Probabilistic Logic Programs 517

with finding how to reach a new (feasible) state from the current state such that the
ap-program associated with the group and the new state jointly entail that the goal
will be true within a given probability interval.

We will also take the problem one step further by reasoning about how the
entity being modeled reacts to our efforts. We are interested in identifying the best
course of action on our part, given some additional inputs regarding the cost of
exerting influence in the environment and how desirable certain outcomes are; this
is called the cost-based query answering problem (CBQA). We describe a heuristic
algorithm based on probability density estimation techniques that can be used to
tackle CBQA with large instances, and then present parallel algorithms capable of
solving these problems faster. Finally, we describe a prototype implementation and
experimental results showing that our algorithms scale well, and achieve results that
are useful in practice.

2 Preliminaries

We now overview the syntax and semantics of ap-programs from [15].

2.1 Syntax

We assume the existence of a logical alphabet that consists of a finite set Lcons of
constant symbols, a finite set Lpred of predicate symbols (each with an associated
arity) and an infinite set Lvar of variable symbols; function symbols are not allowed.
Terms, atoms, and literals are defined in the usual way [17]. We assume that Lpred

is partitioned into disjoint sets: Lact of action symbols and Lsta of state symbols.
Thus, if t1; : : : ; tn are terms, and p is an n-ary action (resp. state) symbol, then
p.t1; : : : ; tn/, is called an action (resp. state) atom.

Definition 1 (Action formula). A (ground) action formula is defined as:

• A (ground) action atom is a (ground) action formula;
• If F and G are (ground) action formulas, then :F , F ^ G, and F _G are also

(ground) action formulas.

The set of all possible action formulas is denoted by formulas.BLact /, where BLact

is the Herbrand base associated with Lact , Lcons , and Lvar .

Definition 2 (ap-formula). If F is an action formula and � D Œ˛; ˇ� � Œ0; 1�, then
F W � is called an annotated action formula (or ap-formula), and � is called the
ap-annotation of F .

In the following, we will use APF to denote the set of all possible ap-formulas.

518 G.I. Simari et al.

Definition 3 (World/State). A world is any finite set of ground action atoms.
A state is any finite set of ground state atoms.

It is assumed that all actions in a world are carried out more or less in parallel and
at once, given the temporal granularity adopted along with the model. Contrary to
(related but essentially different) approaches such as stochastic planning, we assume
here that it is not possible to directly reason about the effects of actions. One reason
for this is that in many applications (e.g., counter-terrorism), there are many, many
variables, and the effects of our actions are not well understood. We now define
ap-rules.

Definition 4 (ap-rule). If F is an action formula, B1; : : : ; Bn are state atoms, and
� is an ap-annotation, then F W � B1 ^ : : : ^ Bm is called an ap-rule. If this
rule is named r , then Head.r/ denotes F W � and Body.r/ denotes B1 ^ : : :^ Bn.

Intuitively, the rule specified above says that if B1; : : : ; Bm are all true in a given
state, then there is a probability in the interval � that the action combination F is
performed by the entity modeled by the ap-rule.

Definition 5 (ap-program). An action probabilistic logic program (ap-program
for short) is a finite set of ap-rules. An ap-program ˘ 0 such that ˘ 0 � ˘ is called
a subprogram of ˘ .

Figure 1 shows a small portion of an ap-program we derived automatically to
model LeT’s actions. On the average, we have derived ap-programs consisting of
approximately 11,500 ap-rules per terror group.

Henceforth, we use Heads.˘/ to denote the set of all annotated formulas
appearing in the head of some rule in ˘ . Given a ground ap-program ˘ , we will
use sta.˘/ (resp., act.˘/) to denote the set of all state (resp., action) atoms that
appear in ˘ .

Example 1 (Worlds and states). Coming back to the ap-program in Fig. 1, the
following are examples of worlds:

fclashCas.jk; 1/g; fclashCas.jk; 1/;fedayeenAtt.jk; 1/g; fg

The following are examples of states:

fsocStrife.pak; 0/;trainCamp.pak; 1/g;
fsocStrife.pak; 1/;relOrg.1/g: �

2.2 Semantics of ap-Programs

We use W to denote the set of all possible worlds, and S to denote the set of all
possible states. It is clear what it means for a state to satisfy the body of a rule [17].

Policy Analytics Generation Using Action Probabilistic Logic Programs 519

Definition 6 (Satisfaction of a rule body). Let ˘ be an ap-program and s a state.
We say that s satisfies the body of a rule F W � B1 ^ : : : ^ Bm if and only if
fB1; : : : ; BM g � s.

Similarly, we define what it means for a world to satisfy a ground action formula:

Definition 7 (Satisfaction of an action formula). Let F be a ground action
formula and w a world. We say that w satisfies F if and only if:

� If F � a, for some atom a 2 BLact , then a 2 w;
� If F � F1 ^ F2, for formulas F1; F2 2 formulas.BLact /, then w satisfies F1 and

w satisfies F2;
� If F � F1 _F2, for formulas F1; F2 2 formulas.BLact /, then w satisfies F1 or w

satisfies F2;
� If F � :F 0, for some formula F 0 2 formulas.BLact /, then w does not satisfy F 0.

Finally, we will use the concept of reduction of an ap-program w.r.t. a state:

Definition 8 (Reduction of an ap-program). Let ˘ be an ap-program and s a
state. The reduction of ˘ w.r.t. s, denoted ˘s , is the set fF W � Body j s satisfies
Body and F W � Body is a ground instance of a rule in ˘g. Rules in this set are
said to be relevant in state s.

The semantics of ap-programs uses possible worlds in the spirit of [9, 11, 23].
Given an ap-program ˘ and a state s, we can define a set LC.˘; s/ of linear
constraints associated with s. Each world wi expressible in the language Lact has an
associated variable pi denoting the probability that it will actually occur. LC.˘; s/

consists of the following constraints.

1. For each Head.r/ 2 ˘s of the form F W Œ`; u�, LC.˘; s/ contains the constraint
` �Pwi 2W ^ wi ˆF pi � u.

2. LC.˘; s/ contains the constraint
P

wi 2W pi D 1.
3. All variables are non-negative.
4. LC.˘; s/ contains only the constraints described in (1)–(3).

While [15] provide a more formal model theory for ap-programs, we merely provide
the definition below. ˘s is consistent iff LC.˘; s/ is solvable over R.

Definition 9 (Entailment of an ap-formula). Let ˘ be an ap-program, s a state,
and F W Œ`; u� a ground action formula. ˘s entails F W Œ`; u�, denoted ˘s ˆ F W
Œ`; u� iff Œ`0; u0� � Œ`; u� where:

• `0 Dminimize
P

wi 2W ^ wi ˆF pi subject to LC.˘; s/.
• u0 D maximize

P
wi 2W ^ wi ˆF pi subject to LC.˘; s/.

Note that, even though Definition 9 defines entailment for reduced programs (i.e.,
w.r.t. a state), the definition contemplates general programs, since given an arbitrary
set of rules there always exists a state that makes it relevant.

The quantity `0 in the above definitions is the smallest possible probability of F ,
given that the facts in ˘ are true. In the same vein, u0 is the largest such probability.
If the Œ`0; u0� interval is contained in Œ`; u�, then F W Œ`; u� is definitely entailed by ˘ .

520 G.I. Simari et al.

3 Abductive Queries to Probabilistic Logic Programs

The first kind of queries that we will study are called basic abductive queries, and
the associated problem is called the Basic Abductive Query Answering Problem
(BAQA for short). Suppose s is a (current) state, G is a goal (an action formula), and
Œ`; u� � Œ0; 1� is a probability interval. The BAQA problem tries to find a new state s0
such that ˘s0 entails G W Œ`; u�. However, s0 must be reachable from s. Reachability
expresses the changes that we can make in the environment; for instance, we might
be able to relieve social strife in Pakistan and influence the Pakistani government
to not provide military support to LeT, but perhaps influencing LeT to not be a
religious organization is out of realm of possibilities.

For this, we assume the existence of a reachability predicate reach specifying
direct reachability from one state to another. reach� is the reflexive transitive closure
of reach and unReach is its complement. For now, we will assume that reach is
provided and can be queried in polynomial time. However, in order to develop
practical algorithms, later we will investigate one way in which reach can be
specified (called reachability constraints).

Example 2 (Reachability between states). Suppose, for simplicity, that the only
state predicate symbols are those that appear in the rules of Fig. 1, and consider
the set of states in Fig. 2. Then, some examples of reachability are the following:
reach.s4; s1/, reach.s1; s4/, reach.s1; s3/, reach.s2; s3/, reach.s3; s2/, reach.s2; s5/

reach.s3; s5/,, :reach.s5; s2/, and :reach.s5; s3/. �

We can now state the BAQA problem formally:

BAQA Problem.
Input: An ap-program ˘ , a state s, a reachability predicate reach and a ground ap-
formula G W Œ`; u�.
Output: “Yes” if there exists a state s0 such that reach�.s; s0/ and ˘s0 ˆ G W Œ`; u�,
and “No” otherwise.
A solution to a BAQA instance is a sequence of states that ends in a state for
which the corresponding subprogram entails the probabilistic goal. Therefore, such
a solution corresponds to a policy that can be implemented to try and bring about
the goal by carrying out the actions prescribed by the sequence.

s1 = {socStrife(pak,1),allianceNSAG(1),trainCamp(pak,0),relOrg(1),govMilSupp(0)}
s2 = {socStrife(pak,1),allianceNSAG(1),trainCamp(pak,0),relOrg(0),govMilSupp(0)}
s3 = {socStrife(pak,0),allianceNSAG(0),trainCamp(pak,0),relOrg(0),govMilSupp(0)}
s4 = {socStrife(pak,0),allianceNSAG(1),trainCamp(pak,0),relOrg(1),govMilSupp(0)}
s5 = {socStrife(pak,1),allianceNSAG(1),trainCamp(pak,1),relOrg(1),govMilSupp(1)}

Fig. 2 A small set of possible states

Policy Analytics Generation Using Action Probabilistic Logic Programs 521

Example 3 (Solution to BAQA). Consider once again the program in the running
example and the set of states from Fig. 2. If the goal is clashCas.jk; 1/ W Œ0; 0:3� (we
want the probability that LeT engages in clashes in J&K causing casualties to be at
most 0:3) and the current state is s4, then the problem is solvable because Example 2
shows that state s3 can be reached from s4, and ˘s3 ˆ clashCas.jk; 1/ W Œ0; 0:3�. �

There may be costs associated with transforming the current state s into another
state s0, and also an associated probability of success of this transformation (e.g.,
the fact that we may try to reduce social strife in Pakistan may only succeed with
some probability). We will address this problem in Sect. 4.

The BAQA problem can be shown to be intractable both in the general case
as well as in constrained subcases; for a formal treatment of the complexity of
BAQA, we refer the reader to [26–28]. It turns out that the complexity of this
problem is caused by two factors; specifically, we need to address the following
two problems:

(P1) Find a subprogram ˘ 0 of ˘ such that when the body of all rules in that
subprogram is deleted, the resulting subprogram entails the goal, and

(P2) Decide if there exists a state s0 such that ˘ 0 D ˘s and s is reachable from the
initial state.

We now present algorithms and techniques for addressing these problems.

3.1 Algorithms for BAQA over Threshold Queries

In this section, we leverage the above intuition that BAQA can be decomposed into
two subproblems to develop algorithms for a special case of BAQA: answering
threshold queries. These queries are over goals of the form F W Œ0; u� (ensure that
F ’s probability is less than or equal to u) or F W Œ`; 1� (ensure that F ’s probability is
at least `). This is a reasonable approach, since threshold goals can be used to require
that certain formulas (actions) should only be entailed with a certain maximum
probability (upper bound) or should be entailed with at least a certain minimum
probability (lower bound). We start by inducing equivalence classes on subprograms
that limit the search space, helping address problem (P1).

Definition 10 (Equivalence of ap-programs). Let ˘ be a ground ap-program and
F be a ground action formula. We say that subprograms ˘1; ˘2 � ˘ are equivalent
given F W Œ`; u�, written ˘1 �F WŒ`;u� ˘2, iff ˘1 ˆ F W Œ`; u� , ˘2 ˆ F W Œ`; u�.
Furthermore, states s1 and s2 are equivalent given F W Œ`; u�, written s1 �F WŒ`;u� s2,
iff reach.s1; s2/, reach.s2; s1/, and ˘s1 �F WŒ`;u� ˘s2 .

Intuitively, sub-programs ˘1; ˘2 are equivalent w.r.t. F W Œ`; u� whenever they both
entail (or do not entail) the annotated formula in question. For clarity, when the
probability interval is evident from context, we will omit it from the notation.

522 G.I. Simari et al.

Fig. 3 An algorithm to solve BAQA assuming a threshold goal

Example 4 (Equivalence of ap-programs). Let ˘ be the ap-program from Fig. 1,
and formula F D clashCas.jk; 1/ W Œ0:4; 1�. Intuitively, the definition of
equivalence between ap-programs w.r.t. an action formula states that rules that don’t
influence the probability of the formula are immaterial. Therefore, we can conclude,
for instance, that fr1; r4; r7g �F fr1; r6; r9g, since the rules that change in these two
sets do not influence the probability with which F is entailed. Equivalence of states
given a formula is analogous. �

Relation�, both between states and between subprograms, is clearly an equivalence
relation. The algorithm in Fig. 3 first tries to identify consistent subprograms that
contain rules that clearly entail the goal (and are easily identifiable). If this is not
possible, the algorithm continues by trying to leverage the presence of equivalence
classes in the input ap-program ˘ . We now present an example reviewing how this
algorithm works.

Policy Analytics Generation Using Action Probabilistic Logic Programs 523

Example 5 (simpleAnnBAQA over the running example). Suppose ˘ is the
ap-program of Fig. 1, the goal is clashCas.jk; 1/ W Œ0; 0:3� (abbreviated with
G W Œ0; 0:3� from now on) and the state is s4 from Fig. 2; note that ˘s4 D fr3; r6; r9g
and that clearly ˘s4 6ˆ clashCas.jk; 1/ W Œ0; 0:3�. The first step checks for
possibilities to leverage subprogram equivalence; clearly, rule r2 satisfies the
condition, and we thus only need to verify that some subprogram containing it
is reachable. Assuming the same reachability predicate outlined in Example 2, state
s3 is reachable from s4; this corresponds to choosing subprogram ˘ 0 D fr2; r5; r8g.

Finally, to illustrate Step 2 of the algorithm, which looks for rules whose heads
involve formulas related to the goal, note that in this case this is simple since all the
heads of rules in ˘ are atomic—therefore passive.˘s4 ; G W Œ0; 0:3�/ D ;, and the
set of active rules contains all the rules in ˘ . �

Next, we will explore a particular way in which reach can be expressed, and how
this can be leveraged to solve the reachability problem (P2). The key is that the
reachability predicate will be expressed through reachability constraints:

Definition 11 (Reachability constraint). Let F and G be first-order formulas over
Lsta and Lvar , connectives ^, _, and :, such that the set of variables over F is
equal to those over G, and all variables are assumed to be universally quantified
with scope over both F and G. A reachability constraint is of the form F 6,! G; we
call F the antecedent and G the consequent of the constraint, and its semantics is:

unReach.s1; s2/, s1 ˆ F and s2 ˆ G

where s1 and s2 are states in S .

Reachability constraints simply state that if the first formula is satisfied in a certain
state, then no states that satisfy the second formula are reachable from it. We now
present an example of a set of reachability constraints.

Example 6 (Reachability constraints). Consider again the setting and ap-program
from Fig. 1. The following are examples of reachability constraints:

rc1 W relOrg.1/ 6,! relOrg.0/

rc2 W govMilSupp.pak; 1/ 6,! trainCamp.pak; 0/

rc3 W allianceNSAG.1/ 6,! socialStrife.0/

Constraint rc1, for instance, states that we are not capable of influencing the group
being modeled to not be a religious organization. �

Algorithm simpleAnnBAQA-Heur-RC (Fig. 4) is optimistic and assumes that
Step 1a of simpleAnnBAQA will yield at least one entailing formula for the goal;
furthermore, it takes advantage of the structure added by the presence of reachability
constraints. After checking for the simple necessary entailment condition, the
algorithm continues by executing the steps of simpleAnnBAQA that compute the
sets active.˘; G W Œ`G; uG�/, passive.˘; G W Œ`G; uG�/, candAct.˘; G W Œ`G; uG�/,

524 G.I. Simari et al.

Fig. 4 A heuristic algorithm, based on simple sufficient conditions of entailment, to solve BAQA
assuming that the goal is an ap-formula of the form either G W Œ0; u� or G W Œ`; 1� and that the state
reachability predicate reach is specified as a set RC of reachability constraints

conf .˘; G W Œ`G; uG�/, and inc.˘/. It then builds formulas generated by reachability
constraints that solution states must satisfy (under the optimistic assumption); the
algorithm uses a subroutine formula.s/ which returns a formula that is a conjunction
of all the atoms in state s and the negations of those not in s. In Step 5, the
formula describes the fact that at least one of the states that make relevant entailing
rules (as described in Algorithm simpleAnnBAQA) must be part of the solution;
similarly, Step 6 builds a formula ensuring that none of the conflicting active rules
can be relevant if the problem is to have a solution. Finally, Step 7 describes
the constraints associated with making relevant rules that are probabilistically
inconsistent. Noticeably absent are the “passive” rules from the previous algorithm;
such rules impose no further constraints on the solution space under the assumptions
being made by the algorithm. The last two steps put subformulas together into a
conjunction of constraints, and the algorithm must decide if there exist any states
that model formula goalState and are eventually reachable from s.

Deciding eventual reachability, as we have seen, is one of the main problems
that we set out to solve as part of BAQA. Though there are many possible ways
to implement this subroutine, here we will explore a SAT-based algorithm, which
is presented in Fig. 5. This algorithm is simple: if the current state does not satisfy
goalState, it starts by initializing formula Reachable which will be used to represent
the set of eventually reachable states at each step. The initial formula describes state
s, and the algorithm then proceeds to select all the constraints whose antecedents
are entailed by Reachable. Once we have this set, Reachable is updated to the
conjunction of the negations of all the consequents of constraints in the set. We
are done if either Reachable at this point models goalState, or the old version of

Policy Analytics Generation Using Action Probabilistic Logic Programs 525

Fig. 5 An algorithm to decide reachability from a state s to any of the states that satisfy the
formula goalState, where reachability is expressed as a set RC of reachability constraints; a
formula is derived describing the set of all possible states eventually reachable from the initial one

Reachable is modeled by the new one, i.e., no new reachable states were discovered.
The following is an example of how decideReachability� SAT works.

Example 7. Consider the ap-program from Fig. 1, along with constraint rc3 from
Example 6. As we saw in Example 5, if the goal is clashCas.jk; 1/ W Œ0; 0:3� and
the current state is s4 from Fig. 2, then rule r2 needs to be made relevant, while r1

and r3 should not be relevant, and the rest do not influence the outcome. This yields
the following goalState formula:

socStrife.pak; 0/ ^ allianceNSAG.0/^ :

_

iD1;3

Body.ri /

!

Reachable starts out with formula.s4/ (that is, the conjunction of all atoms in the
state) and, as Reachableˆ allianceNSAG.1/, it gets updated to:

:socStrife.pak; 0/

which is mutually unsatisfiable with goalState. In the next iteration, however, as
Reachable does not entail the antecedent of rc3, it gets updated to >, which means
that there are no constraints regarding the states that can be reached, and therefore
the algorithm will answer true. �

4 Cost-Based Abductive Query Answering

In this section, we expand on the basic query answering problem described above
and assume that there are costs associated with transforming the current state into
another state, and also an associated probability of success of this transformation;
e.g., the fact that we may try to reduce social strife in Pakistan may only succeed
with some probability. To model this, we use three functions:

526 G.I. Simari et al.

Definition 12. A transition function is any function T W S �S ! Œ0; 1�, and a cost
function is any function cost W S ! Œ0; 1�. A transition cost function, defined w.r.t.
a transition function T and some cost function cost, is a function costT W S �S !
Œ0;1/, with costT .s; s0/ D cost.s0/

T .s;s0/
whenever T .s; s0/ ¤ 0, and1 otherwise.4

The rationale behind the above definition is that transitions with high probability of
occurring are considered to be “easy”, and therefore have a low associated cost.

Function costT describes reachability between any pair of states—a cost of
1 represents an impossible transition. The cost of transforming a state s0 into
state sn by intermediate transformations through the sequence of states seq D
hs0; s1; : : : ; sni can be defined in the following manner:

cost�seq.s0; sn/ D e
P

0�i<n;si 2seq costT .si ;siC1/ (1)

Note that Eq. 1 is only one possible way of computing the cost of transitions through
a sequence; the only hard requirement is that the function must be monotonic (the
costs could, for instance, be additive instead of multiplicative). One way in which
cost functions can be specified is in terms of reward functions.

Definition 13 (Reward functions). An action reward function is a partial function
R W APF ! Œ0; 1�. An action reward function is finite if dom.R/ is finite.

Let R be a finite reward function and ˘ be an ap-program. An entailment-based
reward function for ˘ and R is a function E˘;R W S ! Œ0;1/, defined as:

E˘;R.s/ D
X

F WŒ`;u�2dom.R/^˘sˆF WŒ`;u�

R.F W Œ`; u�/ (2)

Reward functions are used to represent how desirable it is, from the reasoning
agent’s point of view, for a given annotated action formula to be entailed in a given
state by the model being used. Here, we will assume that all reward functions are
finite. We use this notion of reward to define a natural canonical cost function as
costı.s/ D 1

E˘;R.s/
when E˘;R.s/ ¤ 0, and 1 otherwise, for each state s. From now

on, we assume that all transition cost functions are defined in terms of a canonical
cost function.

Example 8. An example of an entailment-based reward function is as follows.
Consider state s2 from Fig. 2, and annotated formulas F1 D clashCas.jk; 1/ ^
murder.jk; 1/ W Œ0:5; 1�, F2 D clashCas.jk; 1/ ^ murder.jk; 1/ W Œ0; 3�,
F3 D fedayeenAtt.jk; 1/ W Œ0; 0:05�.

Suppose we have action reward function R such that: R.F1/ D 0:1, R.F2/ D
0:85, and R.F3/ D 0:7. This function represents that subprograms that entail F2

are much more preferable than those that entail F1, and that F3 is also a desirable
formula to entail. �

4We assume that 1 represents a value for which, in finite-precision arithmetic, 1
1

D 0 and
x1 D 1 when x > 1. The IEEE 754 floating point standard satisfies these rules.

Policy Analytics Generation Using Action Probabilistic Logic Programs 527

Definition 14. A cost based query is a four-tuple hG W Œ`; u�; s; costT ; ki, where
G W Œ`; u� is an ap-formula, s 2 S , costT is a cost function, and k 2 RC [f0g.
CBQA Problem. Given ap-program ˘ and cost-based query hG W Œ`; u�; s;

costT ; ki, return “Yes” if and only if there exists a state s0 and sequence of states
seq D hs; s1; : : : ; s0i such that cost�seq.s; s0/ � k, and ˘s0 ˆ G W Œ`; u�; the answer
is “No” otherwise.

The main difference between the BAQA problem presented above and CBQA is
that in BAQA there is no notion of cost, and we are only interested in the existence
of some sequence of states leading to a state that entails the ap-formula. Even though
we are still interested in sequences, solutions now have associated values depending
on the transitions they attempt and the desirability of the states they traverse. Since
CBQA is a generalization of BAQA, the same intractability results hold here as
well [28]. In the following, we investigate an algorithm for CBQA when the cost
function is defined in terms of entailment-based reward functions; we will focus on
a tractable approach to finding solutions, albeit not optimal ones.

A Heuristic Algorithm Based on Iterative Sampling

Given the exponential search space, we would like to find a tractable heuristic
approach. We now show how this can be done by developing an algorithm in
the class of iterated density estimation algorithms (IDEAs) [2]. The main idea
behind these algorithms is to improve on other approaches such as Hill Climbing,
Simulated Annealing, and Genetic Algorithms by maintaining a probabilistic model
characterizing the best solutions found so far. An iteration then proceeds by (1)
generating new candidate solutions using the current model, (2) singling out the
best of the new samples, and (3) updating the model with the samples from Step 2.
One of the main advantages of these algorithms over classical approaches is that
the probabilistic model, a “byproduct” of the effort to find an optimum, contains a
wealth of information about the problem at hand.

Algorithm DE CBQA (Fig. 6) follows this approach to finding a solution to our
problem. The algorithm begins by identifying certain goal states, which are states
s0 such that ˘s0 ˆ G W Œ`; u�; these states are pivotal, since any sequence of states
from s0 to a goal state is a candidate solution. The algorithms in Sect. 3 can be used
to compute a set of goal states. Continuing with the preparation phase, the algorithm
then tests how good the direct transitions from the initial state s0 to each of the goal
states is; �� now represents the current best sequence (though it might not actually
be a solution). The final step before the sampling begins occurs in line 5, where
we initialize a probability distribution over all states,5 starting out as the uniform
distribution.

5In an actual implementation, the probability distribution should be represented implicitly, as
storing a probability for an exponential number of states would be intractable.

528 G.I. Simari et al.

Fig. 6 An algorithm for CBQA based on probability density estimation

The getGoalStates function called in line 1 performs two tasks: first, it identifies
subprograms ˘ 0 of ˘ such that ˘ 0 ˆ G W Œ`; u�; second, it identifies states s such
that ˘s D ˘ 0, for some ˘ 0 found in the first step. All such states are then labeled
as goal states, since any sequence of states from s0 to any goal state is a candidate
solution.

The while loop in lines 6–13 then performs the main search; giveUp is a
predicate given by parameter which simply tells us when the algorithm should
stop (it can be based on total number of samples, time elapsed, etc.). The value j

represents the length of the sequence of states currently considered, and numIter
is a parameter indicating how many iterations we wish to perform for each length.
Line 9 performs the sampling of sequences, while line 10 assigns a score to each
based on the transition cost function. After updating the score of the best solution
found up to now, line 13 updates the probabilistic model P being used by keeping
only the best solutions found during the last sampling phase. The algorithm finally
returns the best solution it found (if any). An attractive feature of DE CBQA is that
it is an anytime algorithm, i.e., once it finds a solution, given more time it may be
able to refine it into a better one while always being able to return the best so far.
We now discuss one way in which the probability distribution P in the DE CBQA
algorithm can be represented.

Representing the Probability Distribution via
a Bayesian Network

It is reasonable to believe that, in real-world instances of CBQA, states and actions
are not in general conditionally independent; as such, it is critical to explore an

Policy Analytics Generation Using Action Probabilistic Logic Programs 529

approach to maintaining our probability distribution that is capable of handling these
cases. One such method is the Bayesian belief network [24], a directed acyclic graph
modeling conditional dependencies among random variables. In our case, each node
in the network structure represents a random variable covering all possible states for
a single (ordered) position in the final sequence. For a given node, a state is assigned
probability mass proportional to how likely it is to be included in a “good” sequence
at the position associated with that node. These values are initially provided through
uninformed sampling of the state space, while the structure of the final network is
learned through standard machine learning techniques.

Since an exhaustive search for the optimal structure across all potential networks
is superexponential in the number of variables—in our case, the length of the
sequence—we can use a heuristic local search algorithm to perceive graph structure;
for instance, a slightly modified K2 search algorithm with a fixed ordering based on
the sampled sequences to emphasize speed of structure learning [6]. Our intuition
is that neighboring nodes in the sequence are more likely to affect each other than
those farther away. Many other heuristic search algorithms exist, but a discussion of
their merits is outside the scope of this paper.

Sampling from the network is accomplished in two steps. First, recall that a
state’s probability mass at a root node in our Bayesian network is related only
to the proportion of “good” training sequences containing that state at a specific
location. With this in mind, for every root node, we take a weighted sample from its
prior probability distribution table. Second, we sample the conditional probability
table of each child node with respect to the partial assignment provided by sampling
its immediate parents. In this way, we provide a method for sampling a full path
through the state space that takes into account conditional dependencies (and, of
course, independencies) between states, their ordering, and position.

In Sect. 6, we present the results of our experimental evaluation of the DE CBQA
algorithm using this approach, comparing to a baseline algorithm that uses a much
simpler representation.

5 Parallel Solutions for Abductive Query Answering

In the previous sections, we presented algorithms for answering both basic and cost-
based abductive queries, along with several heuristic approaches to improve the
tractability of these computations. However, we can make further gains in scalability
and computation time by identifying portions of these problems to compute in
parallel. In this section, we present two explicitly parallel algorithms for solving
CBQA problems. One algorithm will search for potential entailing states in parallel,
allowing us to either examine more possible states, or to improve the running time
of finding an entailing state. In addition, the iterative sampling for CBQA can be
made more effective by parallelizing the sampling process, allowing for a more
comprehensive search over the possible paths to goal states.

530 G.I. Simari et al.

Fig. 7 A parallel algorithm for finding entailing states for the CBQA problem

5.1 Parallel Selection of Entailing States

Recall the DE CBQA algorithm in Fig. 6 and the getGoalStates function invoked
in line 1; this function returns entailing states, i.e., states s s.t. ˘s ˆ ˘ 0. In
practice, as we will see in Sect. 6, the large search space makes it intractable to
find all such states, and so the number of goal states returned must be limited by the
user. The implementation of getGoalStates that we developed for our experimental
evaluation iteratively goes through potential goal states until one is found; the
heuristic methods shown in Algorithm simpleAnnBAQA-Heur-RC (Fig. 4) are used
to make quick (sound, but not complete) entailment checks.

Rather than looking at potential goal states in sequence, we can parallelize
this procedure. Figure 7 contains a distributed version of getGoalStates called
PAR getGoalStates that will divide the state space and check for entailing states
in parallel over N processors.

The DE CBQA algorithm can now be run with PAR getGoalStates in Line 1.
With this method, the user can specify some termination condition giveUp (e.g., the
number of goal states to find, the amount of search time, etc.) for the concurrent
search for entailing states. In Lines 9 and 10, we divide the state space 2Lsta across
N processors, and iterate through each batch in parallel to find entailing states until
the giveUp condition is true. If the size of SG is still limited to a single goal state,
then PAR getGoalStates can provide a direct speedup of the original method, using
the distributed computation to more quickly identify an entailing state. However, we
can also take advantage of the parallelization to find a larger number of goal states to
test in the DE CBQA algorithm, rather than simply looking at the first state found.

Policy Analytics Generation Using Action Probabilistic Logic Programs 531

Fig. 8 An asynchronous parallel algorithm for CBQA using iterative distributive sampling

5.2 Parallel Sampling of State Paths

The sampling method in the DE CBQA algorithm allows the user to specify the
number of possible paths to examine to reach a particular goal state. In practice,
the space of possible paths from the initial state to a goal state can be very
large, and random sampling may not reliably be able to find a low-cost option
within a tractable computation time. In Fig. 8 we present a distributed algorithm,
ParSampleAsynch DE CBQA, that will divide the iterative sampling of state paths
across n processors. Each of the N parallel nodes performs a separate round
of iterative sampling, maintaining its own sequence probability distribution and
returning the best sequence resulting from these samples. Then, in line 16, we
return the overall �best sequence from each of the distributed samples. While this
asynchronous computation is not the same as increasing the number of samples by
a factor of N , as we are not using all samples to update the probability distribution,
it does facilitate better coverage of the possible sequences. Because of this, we are
more likely to find better sequences, and may be able to achieve this result with a
fewer number of samples per iteration. We can of course also use the parallel version
of getGoalStates, described above, along with either concurrent iterative sampling
algorithm to further improve performance and results.

532 G.I. Simari et al.

6 Experimental Results

In this section, we will report on a series of experimental evaluations that we carried
out on the algorithms presented in Sects. 4 and 5; for reasons of space, we cannot
include experimental results for BAQA (we refer the reader to [26] and [28] for a
full set of empirical results). Also, due to the vast number of possible parameters in
these algorithms, we chose to vary a subset of them for the purposes of this study.

We conducted experiments using a prototype JAVA implementation consisting
of roughly 2,500 lines of code. Each ap-program used in the experiments consists
of a set of randomly generated ap-rules, each with a randomly generated head and
body. The head consists of either one or two clauses of length at most two variables
each, with uniform randomly selected conjunction or disjunction connectors and
random negation. The head is nontrivial; it is guaranteed to have at least one variable
in at least one clause. Each ap-rule’s body is generated by randomly selecting a
conjunction of two atoms. The goal ap-formula is generated in a similar fashion,
but with randomly generated upper and lower bounds. When experiments require a
threshold goal, either the upper bound is set to 1 or the lower bound is set to 0.

6.1 Empirical Evaluation of Algorithms for CBQA

We carried out the following experiments on an Intel Core2 Q6600 processor
running at 2.4 GHz with 8 GB of memory available; all runs were performed on
Windows 7 Ultimate 64-bit OS, and made use of a single core.

For all experiments, we assume an instance of the CBQA problem with ap-
program ˘ and cost-based query Q D hG W Œ`; u�; s; costT ; ki. The required
cost, transition, and reward values for both algorithms are assigned randomly in
accordance with their definitions. We assume an infinite budget for our experiments,
choosing instead to compare the numeric costs associated with the sequences
returned by the algorithms.

A Baseline Algorithm. In the following, we will as a baseline a straightforward
representation for the probability distribution: a mapping of states to the proportion
of “good” sampled sequences that contain that state. We will refer to this method as
the naı̈ve probability vector approach. While this representation is neither memory
nor computationally intensive, it ignores any subtle relationships that may exist
between individual states or their ordering in the overall sequence. Intuitively, an
informed sampling method should provide higher accuracy (i.e., lower sequence
costs) at a greater computational cost, especially in instances when states and actions
interact. To explore this intuition, we remove some of the randomness from our
testing suite by seeding desirable paths through the state space. This is accomplished
by manipulating the cost and transition functions between states, yielding low costs
for specific sequences of states and high costs otherwise. In this way, obvious
conditional dependencies are introduced into the world.

Policy Analytics Generation Using Action Probabilistic Logic Programs 533

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21

C
o

st
 D

ec
re

as
e

F
ac

to
r

Number of Seeded Paths

16
32
512
1024

Fig. 9 Varying the number of seeded paths with a small (e.g., 16 or 32) number of states versus a
larger (e.g., 512 or 1,024) state space

We compare the Bayesian method (implemented with WEKA [12]) against
the naı̈ve probability vector method. First, as a measure of result quality, we
define the cost decrease factor to be the factor difference in the cost of the
best sequence returned by the Bayesian method over that returned by the vector
implementation. Higher cost decrease factors correspond to better relative Bayesian
method performance. Figure 9 shows the cost decrease factor for very small amounts
of seeded paths compared to different sizes of state spaces. For extremely small
numbers of seeded paths, the Bayesian algorithm outperforms by roughly a factor of
2. This low number signifies similar performance to the vector method and is due to
both DE CBQA implementations missing the very few “carved” sequences in their
initial sampling, before any probability distribution is constructed. The conditional
network constructed from bad sampling is less useful; however, this problem can be
easily solved by repetition of the algorithm.

Two trends, distinguished by the size of the state space, begin to form as we
increase the number of seeded paths. When considering a larger number of seeded
paths in larger state spaces, the Bayesian method shows its ability to discover
dependencies in sampled sequences; however, when considering the same number
of paths in a smaller state space, the Bayesian method continues to perform only
slightly better than its vector counterpart. Carving too many (relative to the size of
the state space) desirable paths essentially randomizes the transitions between states;
for example, 20 paths through only 16 states alters overall dependencies far more
than a similar number through 1; 024 states. We explore this relationship further
below.

Figure 10 shows the quality of results as the number of seeded paths is increased
significantly. We see that the Bayesian network version performs admirably in large
state spaces until roughly 8%, when its performance degrades to that of the Bayesian
version in a smaller state space. As in Fig. 9, small instances of the problem stay
roughly constant. Regardless of state space size, we see an increase in result quality
of two to three over the naı̈ve probability vector.

534 G.I. Simari et al.

2

4

16
32
512
1024

1

3

5

1% 2% 4% 8% 16% 32% 64% 128% 256%

C
o

st
 D

ec
re

as
e

F
ac

to
r

Number of Seeded Paths (% of Num. of States)

16
32
512
1024

Fig. 10 Varying the number of seeded paths (and thus the level of conditional dependence in the
world) as a percentage of the total number of states

We have seen that the more informed sampling method performs well, decreasing
overall sequence cost. However, as our initial intuition suggested, the increased
overhead of maintaining conditional dependencies slows the DE CBQA algorithm
significantly. Although the memory requirements of both algorithms increase
linearly in the size of the number of states sampled, the Bayesian method is consis-
tently slower than the vector method. This is due to a similar increase in the runtime
complexity of the Bayesian method. The vector method represents probabilities
as a simple mapping of states to real numbers; as such, an implementation with
a constant lookup time data structure provides extremely fast sampling with a
small memory footprint. For the more informed Bayesian variant, this relationship
is based both on the number of initial iterations over the state space prior to
the formation of the sampling structure and the maximum length of a sampled
sequence. The Bayesian graph has as many nodes as there are states in a sampled
sequence; furthermore, each of these nodes maintains knowledge of all unique states
corresponding to a particular position in the sequence. Learning the structure of the
network, storing the graph, and sampling from it are all dependent on the number
of sampled states and sequence length. Thankfully, we can apply reasonable bounds
to the number of samples, opting instead to instantiate multiple Bayesian networks
over a smaller sample set.

When we include the additional cost of searching for entailing goal states
(Line 1 of the DE CBQA algorithm), both the naı̈ve probability vector and informed
Bayesian network methods scale similarly. We use the same fail-fast pessimistic
approach to the heuristic goal search described earlier. Figure 11 shows how both
algorithms scale with respect to an increase in number of states and number of rules.
As before, the number of rules has a significantly higher effect on overall runtime
than the number of states. We see that the algorithm scales gracefully to large
state/action spaces. As we mentioned above, in our experience, real-world instances
of CBQA tend to contain significantly fewer rules than states and actions [15]; as
such, in these cases DE CBQA scales quite well.

Policy Analytics Generation Using Action Probabilistic Logic Programs 535

409620481024512256

0

20

40

60

80

100

120

256 512 1024 2048 4096256 512 1024 2048 4096256 512 1024 2048 4096256 512 1024 2048 4096 256 512 1024 2048 4096

Number of States

A
ve

ra
g

e
T

im
e

(s
)

Number of Rules

Vector Total

Bayes Total

Fig. 11 Run time comparison as DE CBQA scales with respect to number of states (top axis) and
number of rules (bottom axis). Note the similarity in run time between the Bayesian and vector
probability models

6.2 Empirical Evaluation of Parallel Algorithms for CBQA

We implemented the parallel algorithms using the Java Remote Method Invocation
interface for distributed computation, and tested them on 15 nodes of a compute
cluster, each with four 3.4 GHz cores and 8 GB RAM; the ap-programs and goals
were generated in the same way as in the serial experiments (cf. Sect. 6, p. 532).

First, we compare the running time of the serial and parallel methods for
finding entailing states to use in the DE CBQA computation and demonstrate
how PAR getGoalStates can provide significant savings overall. We then compare
the performance of the parallel algorithms for iterative sampling in DE CBQA.
Unfortunately, due to the synchronization and communication overhead associated
with our particular implementation, the ParSample DE CBQA algorithm is quite
intractable in practice, often taking 5 times the amount of running time for
DE CBQA using the naive vector distribution, and up to 35 times the running time
for the Bayesian network distribution. The asynchronous version of this algorithm,
ParSampleAsynch DE CBQA, is however able to concurrently run the DE CBQA
algorithm with only minimal impact from the communication required to initialize
the problem and obtain the overall best sequence.

Second, we compare the quality of the sequences returned by the asynchronous
parallel sampling algorithm and the serial DE CBQA computation. Using 1,024
samples per iteration as a baseline for the serial algorithm, we run both algorithms
over large rule and state spaces, varying the number of parallel samples per iteration.
Because the parallel method takes distinct samples in parallel, it is able to explore
more of the state space and find better sequences with a fewer number of samples.

Parallel methods for finding entailing states. Two experiments were performed
to determine the effectiveness of PAR getGoalStates as compared to the se-
rial getGoalStates method. The default size of SG (the set of goal states) in
getGoalStates is either the total number of possible states or 50, whichever value
is smaller. The first experiment uses this same cap of 50 entailing states, varying
the number of states between 16 and 4,096 and the number of rules from 256 to
4,096. The parallel algorithm effectively divides the state space to find goal states
concurrently, consistently running much more efficiently than the serial version

536 G.I. Simari et al.

16 32 64 128 256 512 1024 2048 4096

0

20

40

60

80

100

120

0

20

40

60

80

100

120
25

6
51

2
10

24
20

48
40

96 25
6

51
2

10
24

20
48

40
96 25
6

51
2

10
24

20
48

40
96 25
6

51
2

10
24

20
48

40
96 25
6

51
2

10
24

20
48

40
96 25
6

51
2

10
24

20
48

40
96 25
6

51
2

10
24

20
48

40
96 25
6

51
2

10
24

20
48

40
96 25
6

51
2

10
24

20
48

40
96

Number of States

E
n

ta
ilm

en
t

T
im

e
(s

)

Number of Rules

Parallel

Serial

Parallel

Serial

Fig. 12 Running time for both the parallel PAR getGoalStates and serial getGoalStates methods
to find up to 50 entailing states

0

20

40

60

80

100

120

16 32 64 128 256 512 1024 2048 4096

E
n

ta
ilm

en
t

T
im

e
(s

)

Number of States

Serial

Parallel

Fig. 13 Running time for both the parallel PAR getGoalStates and serial getGoalStates methods
to find entailing states. The number of states was varied between 16 and 4,096, and the number of
rules held constant at 4,096

(Fig. 12). For 4,096 states and rules, the parallel entailment method requires 4.96 s,
whereas serial selection is 20 times slower, taking 100.8 s. Furthermore, as shown in
Figs. 13 and 14, the computation time required by the parallel algorithm increases
only very slowly as the number of states and rules increase, indicating that this
method will scale to a much larger number of states and larger programs. Because
the entailment time is often a significant portion of the DE CBQA algorithm,
especially for large state-spaces, the parallel method provides significant overall
savings.

Parallel iterative sampling. As discussed above, the communication and syn-
chronization overhead required for the ParSample DE CBQA algorithm is far too
costly in practice to make this method useful. However, empirical tests showed
that the performance of the asynchronous parallel algorithm is very good with
respect to the serial DE CBQA algorithm. In Fig. 15, the running time of ParSam-
pleAsynch DE CBQA is compared with the serial version for both the vector and
Bayesian distribution methods. For the parallel computations, we performed 60

Policy Analytics Generation Using Action Probabilistic Logic Programs 537

0

10

20

30

40

50

60

70

80

90

256 512 1024 2048 4096

E
n

ta
ilm

en
t

T
im

e
(s

)

Number of Rules

Serial

Parallel

Fig. 14 Running time for both the parallel PAR getGoalStates and serial getGoalStates methods
to find entailing states. The number of rules was varied between 256 and 4,096, and the number of
states held constant at 2,048

16 32 64 128 256 512

0

0.5

1

1.5

2

2.5

3

3.5

Number of States

A
lg

o
ri

th
m

 T
im

e
(s

)

Number of Rules

Vector Serial

Vector Parallel

Bayes Parallel

Bayes Serial

Fig. 15 Running time comparison of ParSampleAsynch DE CBQA and serial DE CBQA using
both the vector and Bayesian distributions

concurrent rounds of the DE CBQA iterative sampling—using all 4 cores on each of
15 nodes of the compute cluster. When using the probability vector representation,
the communication required to set up the remote computations and combine the
final results still dominates the computation even in the asynchronous sampling—in
many cases the parallel version takes at least twice as long. However, this difference
is much smaller in the case of the Bayesian algorithm. A two-sample t-test at the
95% confidence level indicates with a very high p-value of 0.8881 that there is no
significant difference between the running times of the parallel and serial algorithms
with the Bayesian distribution.

538 G.I. Simari et al.

0

0.5

1

1.5

2

2.5

3

3.5

4

32 64 128 256 512 1024

C
o

st
 D

ec
re

as
e

F
ac

to
r

Number of Parallel Samples

Cost Decrease Factor for Parallel Sampling

Vector
Bayes

Fig. 16 Cost comparison of ParSampleAsynch DE CBQA and serial DE CBQA using the vector
and Bayesian distributions. The number of serial samples per iteration were held constant while
the parallel samples per iteration were varied. The speedup factor measures the ratio of the serial
best sequence cost to the parallel best sequence cost

Even though we are not synchronizing the updated probability distributions, the
ParSampleAsynch DE CBQA algorithm is capable of computing multiple concur-
rent rounds of sampling, providing potentially greater coverage of the possible state
sequences. This expanded sampling ability is able to provide better quality (i.e.,
lower cost) result sequences than the standard serial version. Figure 16 compares
the average cost ratio of sequences found by the serial and parallel sampling
algorithms, where the cost decrease factor is defined as Costofsequencefoundbyserial

Costofsequencefoundbyparallel . In
this experiment, we used 1,024 serial samples as our baseline, and varied the number
of parallel samples from 32 to 1,024 for a large number of states (212) and rules
(1,024) using both the naive vector and Bayesian net distributions. As above, this
experiment utilizes all 4 cores on each of 15 nodes in a cluster. With as few as 64
samples taken by each of these 60 processors, both the vector and Bayes versions of
ParSampleAsynch DE CBQA achieve a quality almost at parity with 1,024 serial
samples, with a cost decrease factor of 0.970690347 and 0.918439618 respectively.
At 128 samples, both algorithms surpass the quality of the serial DE CBQA and
find sequences with much lower costs.

The overall efficiency gains of the ParSampleAsynch DE CBQA algorithm
are illustrated in Fig. 17. Using the same parameters as the quality experiments
just described, we also compared the running times of these algorithms. Not
only does this method provide improved quality in the same amount of time for
the default number of 1,024 samples—a 3.6 cost decrease factor for the Bayesian
distribution (Fig. 16)—but we can achieve greater quality in a shorter period of
time. For example, taking 128 parallel samples and using the Bayesian distribution,

Policy Analytics Generation Using Action Probabilistic Logic Programs 539

0

2

4

6

8

10

12

32 64 128 256 512 1024

T
im

e
S

p
ee

d
u

p
 F

ac
to

r

Number of Parallel Samples

Time Seedup Factor for Parallel Sampling

Vector
Bayes

Fig. 17 Running time speedup of ParSampleAsynch DE CBQA versus serial DE CBQA using
both the vector and Bayesian distributions. The number of serial samples per iteration were held
constant while the parallel samples per iteration were varied. The speedup factor measures the ratio
of the serial running time to the parallel running time

ParSampleAsynch DE CBQA requires only about 1
5

the time as DE CBQA for
1,024 samples (16.26 and 3.29 s, respectively), but is able to find sequences with
an average cost decrease factor of 1.57.

7 Related Work

Abduction has been extensively studied in diagnosis [5], reasoning with non-
monotonic logics [7], probabilistic reasoning [13, 25], argumentation [16], plan-
ning [8], and temporal reasoning [8]; furthermore, it has been combined quite
naturally with different variants of logic programs [1, 4]. An abductive logic
programming theory is a triple .P; A; IC /, where P is a logic program, A is a
set of ground abducible atoms (that do not occur in the head of a rule in P), and
IC is a set of classical logic formulas called integrity constraints. An explanation
for a query Q is a set � � A such that P [� ˆ Q, P [� ˆ IC , and P [� is
consistent. This is an abstract definition, independent of syntax and semantics; the
variations in how such aspects are defined has lead to many different models.

David Poole et al. combined probabilistic and non-monotonic reasoning, leading
to the development of Probabilistic Horn Abduction and eventually the Independent
Choice Logic [25]. Christiansen [4] addresses probabilistic abduction with logic
programs based on constraint handling rules. Though these models are related
to our work, they either make general assumptions of pairwise independence
of probabilities of events (such as in [25] or [4]) or are based on the class of

540 G.I. Simari et al.

graphical models including Bayesian Networks (BNs). In BNs, domain knowledge
is represented in a directed acyclic graph in which nodes represent attributes
and edges represent direct probabilistic dependence, whereas the lack of an edge
represents independence. Joint probability distributions can therefore be obtained
from the graph, and abductive reasoning is carried out by applying Bayes’s theorem
given these joint distributions and a set of observations (or hypothetical events).
Another important problem in BNs that is directly related to abductive inference is
that of obtaining the maximum a posteriori probability (usually abbreviated MAP,
and also called most probable explanation, or MPE). The main difference between
graphical model-based work and our work is that we make no assumptions on the
dependence or independence of probabilities of events.

While AI planning may seem relevant, there are several differences. First, we are
not assuming knowledge of the effects of actions; second, we assume the existence
of a probabilistic model underlying the behavior of the entity being modeled. In
this framework, we want to find a state such that when the atoms in the state are
added to the ap-program, the resulting combination entails the desired goal with a
given probability. While the italicized component of the previous sentence can be
achieved within planning, it would require a state space that is exponentially larger
than the one we use. In this space, the search space would be the set of all sets
of atoms closed under consequence that are jointly entailed by any subprogram of
the ap-program and any state (under the definition in this paper). This would cause
states to be potentially exponentially bigger than those in this paper and would also
exponentially increase their number.

8 Conclusions

There are many applications where we need to reason about the behaviors of
actors about whom we can learn probabilistic rules of behavior. Examples of
such applications include the modeling of terror groups [18, 19], the modeling of
animal groups (e.g., groups of gorillas that exhibit behaviors such as avoidance
of other gorilla groups, attacks on other gorilla groups, and so forth) [3]. The US
Treasury, for instance, is interested in modeling behaviors of investor groups to learn
their attitudes towards risk under different conditions; similarly, governments are
interested in the impact of policies on groups (e.g., farmers). In many cases, we
would like to influence these behaviors by understanding what actions we can take
to ensure that the probability that a desired outcome occurs exceeds some threshold.
This is further complicated by the fact that groups do not take actions “one at a
time”; instead, these actions are often correlated and planned, and furthermore, the
effects of these actions are not well understood.

We have formulated these problems via the Basic Abductive Query Answering
(BAQA) and Cost-based Query Answering (CBQA) problems. We have presented
heuristic algorithms that are relatively fast and sound, though incomplete, and

Policy Analytics Generation Using Action Probabilistic Logic Programs 541

developed innovative algorithms that maintain and update probability distributions
as they run, allowing better estimation of solutions while reducing running times.
A further important contribution is that of parallel algorithms for abduction in
probabilistic logic.

Acknowledgements Some of the authors of this paper were funded in part by AFOSR grant
FA95500610405, ARO grant W911NF0910206 and ONR grant N000140910685.

References

1. Baldoni M, Giordano L, Martelli A, Patti V (1997) An abductive proof procedure for reasoning
about actions in modal logic programming. In: Selected papers from NMELP ’96. Springer,
London, pp 132–150

2. Bonet JSD, Isbell CL Jr, Viola PA (1996) MIMIC: finding optima by estimating probability
densities. In: Proceedings of NIPS ’96. MIT press, USA, pp 424–430

3. Bryson JJ, Ando Y, Lehmann H (2007) Agent-based modelling as scientific method: a case
study analysing primate social behaviour. Philos Trans R Soc Lond B 362(1485):1685–1698

4. Christiansen H (2008) Implementing probabilistic abductive logic programming with con-
straint handling rules. In: Constraint handling rules. Springer, Berlin/New York, pp 85–118

5. Console L, Torasso P (1991) A spectrum of logical definitions of model-based diagnosis.
Comput Intell 7(3):133–141

6. Cooper G, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks
from data. Mach Learn 9(4):309–347

7. Eiter T, Gottlob G (1995) The complexity of logic-based abduction. JACM 42(1):3–42
8. Eshghi K (1988) Abductive planning with event calculus. In: Proceedings of ICLP. MIT Press,

USA, pp 562–579, ISBN 0-262-61056-6
9. Fagin R, Halpern JY, Megiddo N (1990) A logic for reasoning about probabilities. Inf Comput

87(1/2):78–128
10. Giles J (2008) Can conflict forecasts predict violence hotspots? New Sci (2647)
11. Hailperin T (1984) Probability logic. Notre Dame J Form Log 25(3):198–212
12. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I (2009) The WEKA data

mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18
13. Josang A (2008) Magdalena, L, Ojeda-Aciego, M, Verdegay, J.L. Abductive reasoning with

uncertainty. In: Proceedings of the IPMU 2008, Torremolinos, Malaga, Spain. pp 9–16
14. Kern-Isberner G, Lukasiewicz T (2004) Combining probabilistic logic programming with the

power of maximum entropy. Artif Intell 157(1–2):139–202
15. Khuller S, Martinez MV, Nau DS, Sliva A, Simari GI, Subrahmanian VS (2007) Computing

most probable worlds of action probabilistic logic programs: scalable estimation for 1030;000

worlds. Ann Math Artif Intell 51(2–4):295–331
16. Kohlas J, Berzati D, Haenni R (2002) Probabilistic argumentation systems and abduction. Ann

Math Artif Intell 34(1–3):177–195
17. Lloyd JW (1987) Foundations of logic programming, 2nd edn. Springer, Berlin/New York
18. Mannes A, Michael M, Pate A, Sliva A, Subrahmanian VS, Wilkenfeld J (2008) Stochastic

opponent modeling agents: a case study with Hamas. In: Proceedings of ICCCD 2008, AAAI
Press, USA, ISBN 978-1-57735-389-8

19. Mannes A, Michael M, Pate A, Sliva A, Subrahmanian VS, Wilkenfeld J (2008) Stochastic
opponent modelling agents: a case study with Hezbollah. In: Liu H, Salerno J (eds) Proceedings
of the first international workshop on social computing, behavioral modeling, and prediction,
Springer, Germany, ISBN 978-0-387-77671-2

542 G.I. Simari et al.

20. Mannes A, Shakarian J, Sliva A, Subrahmanian VS (2011) A computationally-enabled analysis
of Lashkar-e-Taiba attacks in Jammu and Kashmir. In: Proceedings of EISIC. IEEE Computer
Society, pp 224–229, ISBN 978-0-7695-4406-9

21. Ng RT, Subrahmanian VS (1992) Probabilistic logic programming. Inf Comput 101(2):
150–201

22. Ng RT, Subrahmanian VS (1993) A semantical framework for supporting subjective and
conditional probabilities in deductive databases. J Autom Reason 10(2):191–235

23. Nilsson N (1986) Probabilistic logic. Artif Intell 28:71–87
24. Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann, San Francisco
25. Poole D (1997) The independent choice logic for modelling multiple agents under uncertainty.

Artif Intell 94(1–2):7–56
26. Simari GI, Subrahmanian VS (2010) Abductive inference in probabilistic logic programs. In:

Technical communications of ICLP’10. LIPIcs, vol 7, Schloss Dagstuhl. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik 2010, ISBN 978-3-939897-17-0, pp 192–201

27. Simari GI, Dickerson JP, Subrahmanian VS (2010) Cost-based query answering in probabilistic
logic programs. In: Proceedings of SUM 2010. LNCS. Springer, Berlin, Germany

28. Simari GI, Dickerson JP, Sliva A, Subrahmanian VS (2012) Parallel abductive query answering
in probabilistic logic programs. Trans Comput Log

	Policy Analytics Generation Using Action Probabilistic Logic Programs
	1 Introduction
	2 Preliminaries
	2.1 Syntax
	2.2 Semantics of ap-Programs

	3 Abductive Queries to Probabilistic Logic Programs
	3.1 Algorithms for BAQA over Threshold Queries

	4 Cost-Based Abductive Query Answering
	5 Parallel Solutions for Abductive Query Answering
	5.1 Parallel Selection of Entailing States
	5.2 Parallel Sampling of State Paths

	6 Experimental Results
	6.1 Empirical Evaluation of Algorithms for CBQA
	6.2 Empirical Evaluation of Parallel Algorithms for CBQA

	7 Related Work
	8 Conclusions
	References

