
Cost-Based Query Answering in
Action Probabilistic Logic Programs

Gerardo I. Simari, John P. Dickerson, and V.S. Subrahmanian

Department of Computer Science and UMIACS
University of Maryland College Park

College Park, MD 20742, USA
{gisimari,jdicker1,vs}@cs.umd.edu

Abstract. Action-probabilistic logic programs (ap-programs), a class of proba-
bilistic logic programs, have been applied during the last few years for modeling
behaviors of entities. Rules in ap-programs have the form “If the environment in
which entity E operates satisfies certain conditions, then the probability that E
will take some action A is between L and U”. Given an ap-program, we have
addressed the problem of deciding if there is a way to change the environment
(subject to some constraints) so that the probability that entity E takes some ac-
tion (or combination of actions) is maximized. In this work we tackle a related
problem, in which we are interested in reasoning about the expected reactions
of the entity being modeled when the environment is changed. Therefore, rather
than merely deciding if there is a way to obtain the desired outcome, we wish
to find the best way to do so, given costs of possible outcomes. This is called
the Cost-based Query Answering Problem (CBQA). We first formally define and
study an exact (intractable) approach to CBQA, and then go on to propose a more
efficient algorithm for a specific subclass of ap-programs that builds on past work
in a basic version of this problem.

1 Introduction

Action probabilistic logic programs (ap-programs for short) [10] are a class of prob-
abilistic logic programs (PLPs) [14,15,9]. ap-programs have been used extensively to
model and reason about the behavior of groups; for instance – an application for reason-
ing about terror groups based on ap-programs has users from over 12 US government
entities [7]. ap-programs use a two sorted logic where there are “state” predicate sym-
bols and “action” predicate symbols, where action atoms only represent the fact that an
action is taken, and not the action itself; they are therefore quite different from actions
in domains such as AI planning or reasoning about actions, in which effects, precon-
ditions, and postconditions are part of the specification. We assume that effects and
preconditions are generally not known. These programs can be used to represent be-
haviors of arbitrary entities (ranging from users of web sites to institutional investors
in the finance sector to corporate behavior) because they consist of rules of the form
“if a conjunction C of atoms is true in a given state S, then entity E (the entity whose
behavior is being modeled) will take action A with a probability in the interval [L, U].”

In such applications, it is essential to avoid making probabilistic independence as-
sumptions as the goal is to discover probabilistic dependencies and then exploit these

A. Deshpande and A. Hunter (Eds.): SUM 2010, LNAI 6379, pp. 319–332, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

320 G.I. Simari, J.P. Dickerson, and V.S. Subrahmanian

findings for forecasting. For instance, Figure 1 shows a small set of rules automati-
cally extracted from data [1] about Hezbollah’s past. Rule 1 says that Hezbollah uses
kidnappings as an organizational strategy with probability between 0.5 and 0.56 when-
ever no political support was provided to it by a foreign state (forstpolsup), and
the severity of inter-organizational conflict involving it (intersev1) is at level “c”.
Rules 2 and 3 state that kidnappings will be used as a strategy with 80-86% probabil-
ity when no external support is solicited by the organization (extsup) and either the
organization does not advocate democratic practices (demorg) or electoral politics is
not used as a strategy (elecpol). Similarly, Rules 4 and 5 refer to the action “civil-
ian targets chosen based on ethnicity” (tlethciv). Rule 4 states that this action will
be taken with probability 0.49 to 0.55 whenever the organization advocates democratic
practices, while Rule 5 states that the probability rises to between 0.71 and 0.77 when
electoral politics are used as a strategy and the severity of inter-organizational conflict
(with the organization with which the second highest level of conflict occurred) was
not negligible (intersev2). ap-programs have been used extensively by terrorism
analysts to make predictions about terror group actions [7,13].

r1. kidnap(1) : [0.50, 0.56] ← forstpolsup(0) ∧ intersev1(c).
r2. kidnap(1) : [0.80, 0.86] ← extsup(1) ∧ demorg(0).
r3. kidnap(1) : [0.80, 0.86] ← extsup(1) ∧ elecpol(0).
r4. tlethciv(1) : [0.49, 0.55]← demorg(1).
r5. tlethciv(1) : [0.71, 0.77]← elecpol(1) ∧ intersev2(c).

Fig. 1. A small set of rules modeling Hezbollah

In [21], we explored the problem of determining what we can do in order to induce
a given behavior by the group. For example, a policy maker might want to understand
what we can do so that a given goal (e.g., the probability of Hezbollah using kidnap-
pings as a strategy is below some percentage) is achieved, given some constraints on
what is feasible. In this paper, we take the problem one step further by adding the desire
to reason about how the entity being modeled reacts to our efforts. We are therefore
interested in finding what the best course of action on our part is given some additional
input regarding how desirable certain outcomes are; this is called the cost-based query
answering problem (CBQA). In the following, we first briefly recall the basics of ap-
programs and then present CBQA formally. We then investigate an approach to solving
this problem exactly based on Markov Decision Processes, showing that this approach
quickly becomes infeasible in practice. Afterwards, we describe a novel heuristic al-
gorithm based on probability density estimation techniques that can be used to tackle
CBQA with much larger instances. Finally, we describe a prototype implementation
and experimental results showing that our heuristic algorithm scales well in practice.

A brief note on related work: almost all past work on abduction in such settings
has been devised under various independence assumptions [19,18,5]. Apart from our
first proposal [21], we are aware of no work to date on abduction in possible worlds-
based probabilistic logic systems such as those of [8], [16], and [6] where independence
assumptions are not made.

Cost-Based Query Answering in Action Probabilistic Logic Programs 321

2 Preliminaries

2.1 Syntax

We assume the existence of a logical alphabet consisting of a finite set Lcons of constant
symbols, a finite set Lpred of predicate symbols (each with an associated arity), and an
infinite set Lvar of variable symbols; function symbols are not allowed. Terms, atoms,
and literals are defined in the usual way [12]. We assume Lpred is partitioned into
disjoint sets: Lact of action symbols and Lsta of state symbols. If t1, . . . , tn are terms,
and p is an n-ary action (resp. state) symbol, then p(t1, . . . , tn), is an action (resp. state)
atom.

Definition 1 (Action formula). (i) A (ground) action atom is a (ground) action for-
mula; (ii) if F and G are (ground) action formulas, then ¬F , F ∧ G, and F ∨ G are
also (ground) action formulas.

The set of all possible action formulas is denoted by formulas(BLact), where BLact is
the Herbrand base associated with Lact, Lcons, and Lvar.

Definition 2 (ap-formula). If F is an action formula and μ = [α, β] ⊆ [0, 1], then
F : μ is called an annotated action formula (or ap-formula), and μ is called the ap-
annotation of F .

We will use APF to denote the (infinite) set of all possible ap-formulas.

Definition 3 (World/State). A world is any finite set of ground action atoms. A state is
any finite set of ground state atoms.

It is assumed that all actions in the world are carried out more or less in parallel and at
once, given the temporal granularity adopted along with the model. Contrary to (related
but essentially different) approaches such as stochastic planning, we are not concerned
here with reasoning about the effects of actions. We now define ap-rules.

Definition 4 (ap-rule). If F is an action formula, B1, . . . , Bn are state atoms, and μ
is an ap-annotation, then F : μ← B1 ∧ . . . ∧ Bm is called an ap-rule. If this rule is
named r, then Head(r) denotes F : μ and Body(r) denotes B1 ∧ . . . ∧ Bn.

Intuitively, the rule specified above says that if B1, . . . , Bm are all true in a given state,
then there is a probability in the interval μ that the action combination F is performed
by the entity modeled by the ap-rule.

Definition 5 (ap-program). An action probabilistic logic program (ap-program for
short) is a finite set of ap-rules. An ap-program Π ′ s.t. Π ′ ⊆ Π is called a subpro-
gram of Π .

Figure 1 shows a small part of an ap-program derived automatically from data about
Hezbollah. Henceforth, we use Heads(Π) to denote the set of all annotated formulas
appearing in the head of some rule in Π . Given a ground ap-program Π , sta(Π) (resp.,
act(Π)) denotes the set of all state (resp., action) atoms in Π .

Example 1 (Worlds and states). Coming back to the ap-program in Figure 1, the follow-
ing are examples of worlds: {kidnap(1)}, {kidnap(1), tlethciv(1)}, {}. The fol-
lowing are examples of states: {forstpolsup(0), elecpol(0)}, {demorg(1)}, and
{extsup(1), elecpol(1)}.

322 G.I. Simari, J.P. Dickerson, and V.S. Subrahmanian

2.2 Semantics of ap-Programs

We useW to denote the set of all possible worlds, and S to denote the set of all possible
states. It is clear what it means for a state to satisfy the body of a rule [12].

Definition 6 (Satisfaction of a rule body by a state). Let Π be an ap-program and s
a state. We say that s satisfies the body of a rule F : μ← B1 ∧ . . . ∧ Bm if and only
if {B1, . . . , BM} ⊆ s.

Similarly, we define what it means for a world to satisfy a ground action formula:

Definition 7 (Satisfaction of an action formula by a world). Let F be a ground action
formula and w a world. We say that w satisfies F if and only if: (i) if F ≡ a, for some
atom a ∈ BLact , then a ∈ w; (ii) if F ≡ F1 ∧ F2, for action formulas F1, F2 ∈
formulas(BLact), then w satisfies F1 and w satisfies F2; (iii) if F ≡ F1 ∨ F2, for
action formulas F1, F2 ∈ formulas(BLact), then w satisfies F1 or w satisfies F2; (iv) if
F ≡ ¬F ′, for action formula F ′ ∈ formulas(BLact), then w does not satisfy F ′.

Finally, we will use the concept of reduction of an ap-program w.r.t. a state:

Definition 8 (Reduction of an ap-program w.r.t. a state). Let Π be an ap-program
and s a state. The reduction of Π w.r.t. s, denoted Πs, is the set {F : μ | s satisfies
Body and F : μ← Body is a ground instance of a rule in Π}. Rules in this set are said
to be relevant in state s.

The semantics of ap-programs uses possible worlds in the spirit of [6,8,16]. Given an
ap-program Π and a state s, we can define a set LC (Π, s) of linear constraints associ-
ated with s. Each world wi expressible in the language Lact has an associated variable
vi denoting the probability that it will actually occur. LC (Π, s) consists of the follow-
ing constraints.

1. For each Head(r) ∈ Πs of the form F : [�, u], LC (Π, s) contains the constraint
� ≤∑

wi∈W ∧wi|=F vi ≤ u.
2. LC (Π, s) contains the constraint

∑
wi∈W vi = 1.

3. All variables are non-negative.
4. LC (Π, s) contains only the constraints described in 1− 3.

While [10] provides a more formal model theory for ap-programs, we merely provide
the definition below. Πs is consistent iff LC (Π, s) is solvable over the reals, R.

Definition 9 (Entailment of an ap-formula by an ap-program). Let Π be an ap-
program, s a state, and F : [�, u] a ground action formula. Πs entails F : [�, u],
denoted Πs |= F : [�, u] iff [�′, u′] ⊆ [�, u] where:
�′ = minimize

∑
wi∈W ∧wi|=F vi subject to LC (Π, s).

u′ = maximize
∑

wi∈W ∧wi|=F vi subject to LC (Π, s).

The following is an example of both LC (Π, s) and entailment of an ap-formula.

Example 2 (Multiple probability distributions given LC (Π, s) and entailment). Con-
sider ap-program Π from Figure 1 and state s2 from Figure 2. The set of all possi-
ble worlds is: w0 = {}, w1 = {kidnap(1)}, w2 = {tlethciv(1)}, and w3 =
{kidnap(1),tlethciv(1)}. Suppose pi denotes the probability of world wi.
LC (Π, s2) then consists of the following constraints:

Cost-Based Query Answering in Action Probabilistic Logic Programs 323

s1 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(1), extsup(0), demorg(0)}
s2 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(0), extsup(0), demorg(1)}
s3 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(0), extsup(0), demorg(0)}
s4 = {forstpolsup(1), intersev1(c), intersev2(c), elecpol(1), extsup(1), demorg(0)}
s5 = {forstpolsup(0), intersev1(c), intersev2(c), elecpol(0), extsup(1), demorg(0)}

Fig. 2. A small set of possible states

0.5 ≤ p1 + p3 ≤ 0.56
0.49 ≤ p2 + p3 ≤ 0.55
p0 + p1 + p2 + p3 = 1

One possible solution to this set of constraints is p0 = 0, p1 = 0.51, p2 = 0.05, and
p3 = 0.44; in this case, there are other possible distributions that are also solutions.
Consider formula kidnap(1) ∧ tlethciv(1), which is satisfied only by world w3.
This formula is entailed with probability in [0, 0.55], meaning that one cannot assign a
probability greater than 0.55 to this formula1.

3 The Cost-Bounded Query Answering Problem

Suppose s is a state (the current state), G is a goal (an action formula), and [�, u] ⊆ [0, 1]
is a probability interval. We are interested in finding a new state s′ such that Πs′ entails
G : [�, u]. However, s′ must be reachable from s. In this paper, we assume that there
are costs associated with transforming the current state into another state, and also an
associated probability of success of this transformation; e.g., the fact that we may try
to reduce foreign state political support for Hezbollah may only succeed with some
probability. To model this, we will make use of three functions:

Definition 10. A transition function is any function T : S × S → [0, 1], and a cost
function is any function cost : S → [0,∞). A transition cost function, defined w.r.t. a
transition function T and some cost function cost, is a function costT : S×S → [0,∞),
with costT (s, s′) = cost(s′)

T (s,s′) whenever T (s, s′) �= 0, and∞ otherwise2.

Example 3. Suppose that the only state predicate symbols are those that appear in the
rules of Figure 1, and consider the set of states in Figure 2. Then, an example of a transi-
tion function is: T (s1, s2) = 0.93, T (s1, s3) = 0.68, T (s2, s1) = 0.31, T (s4, s1) = 1,
T (s2, s5) = 0, T (s3, s5) = 0, and T (si, sj) = 0 for any pair si, sj other than the ones
considered above. Note that, if state s5 is reachable, then the ap-program is inconsistent,
since both rules 1 and 2 are relevant in that state.

Function costT describes reachability between any pair of states – a cost of ∞ rep-
resents an impossible transition. The cost of transforming a state s0 into state sn by

1 Note that, contrary to what one might think, the interval [0, 1] is not necessarily a solution.
2 We assume that ∞ represents a value for which, in finite-precision arithmetic, 1

∞ = 0 and
x∞ =∞ when x > 1. The IEEE 754 floating point standard satisfies these rules.

324 G.I. Simari, J.P. Dickerson, and V.S. Subrahmanian

intermediate transformations through state the sequence of states seq = 〈s0, s1, . . . , sn〉
is defined:

cost∗seq(s0, sn) = e
∑

0≤i<n,si∈seq costT (si,si+1) (1)

One way in which cost functions can be specified is in terms of reward functions.

Definition 11 (Reward functions). An action reward function is a partial function
R : APF → [0, 1]. An action reward function is finite if dom(R) is finite.

Let R be a finite reward function and Π be an ap-program. An entailment-based
reward function for Π and R is a function EΠ,R : S → [0,∞), defined as:

EΠ,R(s) =
∑

F :[�,u]∈dom(R)∧Πs|=F :[�,u]

R(F : [�, u]) (2)

Reward functions are used to represent how desirable it is, from the reasoning agent’s
point of view, for a given annotated action formula to be entailed in a given state by the
model being used (this is the intuition behind Equation 2; other ways of defining this are
also possible). In this paper, we will assume that all reward functions are finite. We use
this notion of reward to define a natural canonical cost function as cost◦(s) = 1

EΠ,R(s)

when EΠ,R(s) �= 0, and ∞ otherwise, for each state s. In the rest of this paper, we
assume that all transition cost functions are defined in terms of a canonical cost function.

Example 4. An example of an entailment-based reward function is as follows. Consider
state s2 from Figure 2, and annotated formulas F1 = kidnap(1) ∧ tlethciv(1) :
[0, 0.60], F2 = kidnap(1) : [0, 0.05], and F3 = tlethciv(1) : [0, 0.5]. Suppose we
have action reward function R such that R(F1) = 0.2, R(F2) = 0.54, and R(F3) =
0.14. Now, considering that Πs2 |= F1, Πs2 �|= F2, and Πs2 |= F3, we have that,
according to Equation 2 in Definition 11, EΠ,R(s2) = 0.2 + 0.14 = 0.34. Assuming
T (s1, s2) = 0.93 as in Example 3, we have costT (s1, s2) = 1

0.34 ∗ 1
0.93 ≈ 3.162.

Definition 12. A cost based query is a 4-tuple 〈G : [�, u], s, costT , k〉, where G : [�, u]
is an ap-formula, s ∈ S, costT is a cost function, and k ∈ R

+ ∪ {0}.
CBQA Problem. Given an ap-program Π and a cost-based query 〈G : [�, u], s,
costT , k〉, return “Yes” if and only if there exists a state s′ and sequence of states
seq = 〈s, s1, . . . , s

′〉 such that cost∗seq(s, s
′) ≤ k, and Πs′ |= G : [�, u]; the answer

is “No” otherwise.
In [21], a related problem called the Basic Probabilistic Logic Abduction Problem

(Basic PLAP) is proposed; the main difference is that in Basic PLAP there is no notion
of cost, and we are only interested in the existence of some sequence of states leading
to a state that entails the ap-formula.

Example 5. Consider once again the program in the running example and the set of
states from Figure 2. Suppose the goal is kidnap(1) : [0, 0.6] (we want the probability
of Hezbollah using kidnappings to be at most 0.6) and the current state is s4, k = 3.
Suppose we have a reward function EΠ,R such that EΠ,R(s1) = 0.5, EΠ,R(s2) = 0.15,
EΠ,R(s3) = 0.5, EΠ,R(s4) = 0.1, EΠ,R(s5) = 0, and EΠ,R(si) = 0 for all other
si ∈ S. Finally, for the sake of simplicity, suppose transition function T states that all
transitions have probability 1.

Cost-Based Query Answering in Action Probabilistic Logic Programs 325

The states that make relevant a subprogram that entails the goal are: s1, s2, s3, and
s5. The objective is then to find a finite sequence of states starting at s4 and finishing
in any other state such that the total cost of the sequence is less than 3 (recall that cost
is defined costT (s, s′) = cost◦(s′)/T (s, s′)). We can easily see that directly moving to
either state s1 or s3 satisfies these conditions, with a cost of 2; moving to s2 or s5 does
not, since the cost would be ≈ 6.67 and∞, respectively.

The following proposition is a direct consequence of Proposition 1 in [21], which states
that the Basic PLAP problem is EXPTIME-complete. Unfortunately, due to space con-
straints proofs will be omitted.

Proposition 1. CBQA is EXPTIME-complete.

Furthermore, we can show that CBQA is NP-hard whenever one of two simplifying
assumptions hold: (1) the cardinality of the set of ground action atoms is bounded by
a constant, and (2) the cardinality of the set of ground state atoms is bounded by a
constant. These results are interesting because they show that the complexity of CBQA
is caused by having to solve two independent problems: (P1) Finding a subprogram
Π ′ ⊆ Π such that when the body of all rules in Π ′ is deleted, the resulting subprogram
entails the goal, and (P2) Decide if there exists a state s′ such that Π ′ = Πs and s is
reachable from the initial state within the cost budget allowed.

In the next sections we will investigate algorithms for CBQA when the cost function
is defined in terms of entailment-based reward functions. We will begin by presenting
an exact algorithm, and then go on to investigate a more tractable approach to finding
solutions, albeit not optimal ones.

4 CBQA Algorithms for Threshold Queries

A threshold goal is an annotated action formula of the form F : [0, u] or F : [�, 1]; this
kind of goals can be used to express the desire that certain formulas (actions) should
only be entailed with a certain maximum probability (upper bound) or should be en-
tailed with at least a certain minimum probability (lower bound). In this paper, we only
give algorithms for such queries.

4.1 An Exact Algorithm for CBQA

We show that any CBQA problem can be mapped to a Markov Decision Process [2,20]
problem. An instance of an MDP consists of: a finite set S of environment states; a finite
set A of actions; a transition function T : S × A → Π(S) specifying the probability
of arriving at every possible state given that a certain action is taken in a given state;
and a reward function R : S × A → R specifying the expected immediate reward
gained by taking an action in a state. The objective is to compute a policy π : S → A
specifying what action should be taken in each state – the policy should be optimal w.r.t.
the expected utility obtained from executing it.

Obtaining an MDP from the Specification of a CBQA Instance. We show how any
instance of a CBQA problem can be mapped to an MDP in such a way that an optimal
policy for this MDP corresponds to solutions to the original CBQA problem.

326 G.I. Simari, J.P. Dickerson, and V.S. Subrahmanian

State Space: The set SMDP of MDP states corresponds directly to the set S.
Actions: The set AMDP of possible actions in the MDP domain corresponds to the set of
all possible attempts at changing the current state. We can think of the set of actions as
containing one action per state in s ∈ S, which represents the change from the current
state to s. We will therefore say that action a specifying that the state will be changed
to s is congruent with s, denoted a ∼= s.
Transition Function: The transition function TMDP for the MDP can be directly obtained
from the transition function T in the CBQA instance. Formally, let s, s′ ∈ SMDP and
a ∈ AMDP; we define:

TMDP(s, a, s′) =

{
0 if a �∼= s′,
T (s, s′) otherwise;

(3)

TMDP(s, a, s) = 1− T (s, a, s′)for a ∼= s′; (4)

the last case represents the fact that, when actions fail to have the desired effect, the
current state is unchanged.
Reward Function: The reward function of the MDP, which describes the reward directly
obtained from performing action a ∈ A in state s ∈ S, can also be directly obtained
from the CBQA instance. Let s ∈ SMDP, a ∈ AMDP, Π be an ap-program, G : [�, u] be
the goal, and EΠ,R be an entailment-based reward function:

R(s, a) =

{
−1 ∗ costT (s, s′) for state s′ ∈ S such that a ∼= s′,
1 for states s′ ∈ S such that Πs′ |= G : [�, u].

(5)

To conclude, we present the following results. The first states that given an instance
of CBQA, our proposed translation into an MDP is such that an optimal policy under
Maximum Expected Utility (MEU) for such an MDP expresses a solution for the orig-
inal instance. In the following, we say that a sequence of states 〈s0, s1, . . . , sk〉 is the
result of following a policy π if π(si) = ai+1, where 0 ≤ i < k and ai+1

∼= si+1.

Proposition 2. Let O = (Π,S, s0, G : [�, u], cost, T, EΠ,R, k) be an instance of a
CBQA problem that has a solution (output “Yes”), and M = (SMDP, AMDP, TMDP, RMDP)
be its corresponding translation into an MDP. If π is a policy for M that is optimal w.r.t.
the MEU criterion, then following π starting at state s0 ∈ SMDP yields a sequence of
states that satisfies the conditions for a solution to O.

Second, we analyze the computational cost of taking this approach. As there are numer-
ous algorithms to solve MDPs, we only analyze the size of the MDP resulting from the
translation of an instance of CBQA. The well-known Value Iteration algorithm [2] iter-
ates over the entire state space a number of times that is polynomial in |S|, |A|, β, and
B, where B is an upper bound on the number of bits that are needed to represent any
numerator or denominator of β [11]. Now, each iteration takes time in O(|A| · |S|2),
which is equivalent to O(|S|3) since |A| = |S|; this means that only for very small
instances will solving the corresponding MDP be feasible.

As can be seen from the above mapping, the key point in which our problem differs
from approaches like planning under uncertainty is that finding a sequence of states

Cost-Based Query Answering in Action Probabilistic Logic Programs 327

that is a solution to CBQA involves executing actions in parallel which, among other
things, means that the number of possible actions that can be considered in a given state
is very large. This makes planning approaches infeasible since their computational cost
is intimately tied to the number of possible actions in the domain (generally assumed
to be fixed at a relatively small number). In the case of MDPs, even though state aggre-
gation techniques have been investigated to keep the number of states being considered
manageable [4,23], similar techniques for action aggregation have not been developed.

4.2 A Heuristic Algorithm Based on Iterative Sampling

Given the exponential search space, we would like to find a tractable heuristic approach.
We now show how this can be done by developing an algorithm in the class of iterated
density estimation algorithms (IDEAs) [3,17]. The main idea behind these algorithms is
to improve on other approaches such as Hill Climbing, Simulated Annealing, and Ge-
netic Algorithms by maintaining a probabilistic model characterizing the best solutions
found so far. An iteration then proceeds by (1) generating new candidate solutions using
the current model, (2) singling out the best out of the new samples, and (3) updating the
model with the samples from Step 2. One of the main advantages of these algorithms
over classical approaches is that the probabilistic model, a “byproduct” of the effort to
find an optimum, contains a wealth of information about the problem at hand.

Algorithm DE CBQA (Figure 3) follows this approach to finding a solution to our
problem. The algorithm begins by identifying certain goal states, which are states s′

such that Πs′ |= G : [�, u]; these states are pivotal, since any sequence of states from s0

to a goal state is a candidate solution. The algorithms in [21] can be used to compute a
set of goal states. Continuing with the preparation phase, the algorithm then tests how
good the direct transitions from the initial state s0 to each of the goal states is; φ∗ now
represents the current best sequence (though it might not actually be a solution). The
final step before the sampling begins occurs in Line 5, where we initialize a probability
distribution over all states3, which is initialized with the uniform distribution.

The while loop in Lines 6-13 then performs the main search; giveUp is a predicate
given by parameter which simply tells us when the algorithm should stop (it can be
based on total number of samples, time elapsed, etc). The value j represents the length
of the sequence of states currently considered, and numIter is a parameter indicating
how many iterations we wish to perform for each length. Line 9 performs the sampling
of sequences, while Line 10 assigns a score to each based on the transition cost function.
After updating the score of the best solution found up to now, Line 13 updates the
probabilistic model P being used by keeping only the best solutions found during the
last sampling phase. The algorithm finally returns the best solution it found (if any). An
attractive feature of DE CBQA is that it is an anytime algorithm, i.e., once it finds a
solution, given more time it may be able to refine it into a better one while always being
able to return the best so far. We now show an example of this algorithm at work.

Example 6. Consider once again the ap-program from Figure 1, and the states from Fig-
ure 2. Suppose that we have the following inputs. The goal is kidnap(1) : [0, 0.6]; the

3 In an actual implementation, the probability distribution should be represented implicitly, as
storing a probability for an exponential number of states would be intractable.

328 G.I. Simari, J.P. Dickerson, and V.S. Subrahmanian

Algorithm DE CBQA(Π,G : [�, u], s0, T, h, k,numIter , giveUp)
1. SG:= getGoalStates (Π,G : [�, u]);
2. test all transitions (s0, sG), for sG ∈ SG; calculate cost∗seq(s0, sG) for each;
3. let φbest be the two-state sequence that has the lowest cost, denoted cbest;
4. let S ′ = S − SG − {s0}; set j := 2;
5. initialize probability distribution P over S ′ s.t. P (s) = 1

|S′| for each s ∈ S ′;
6. while !giveUp do
7. j := j + 1;
8. for i = 1 to numIter do
9. randomly sample (using P) a set H of h sequences of states of length j starting at s0

and ending at some sG ∈ SG;
10. rank each sequence φ with cost∗seq(s0, φ(j));
11. pick the sequence in H with the lowest cost c∗, call it φ∗;
12. if c∗ < cbest then φbest:= φ∗; cbest:= c∗;
13. P := generate new distribution based on H ;
14. return φbest;

Fig. 3. An algorithm for CBQA based on probability density estimation

transition probabilities are as follows: T (s4, s1) = 0.1, T (s4, s2) = 0.1, T (s4, s3) =
0.1, T (s2, s1) = 0.9, T (s3, s2) = 0.8, T (s5, s2) = 0.9, T (s5, s3) = 0.2, T (s5, s1) =
0.3, T (s1, s3) = 0.01, and T (si, sj) = 1 for any pair of states si, sj not previ-
ously mentioned; the initial state is s4; the reward function EΠ,R is defined as fol-
lows: EΠ,R(s1) = 0.5, EΠ,R(s2) = 0.15, EΠ,R(s3) = 0.5, EΠ,R(s4) = 0.1, and
EΠ,R(s5) = 0.7; giveUp is a predicate that simply checks if we’ve sampled a total of 5
or more sequences; numIter = 2; h = 3; and k = 1, 000.

The three states that make relevant a subprogram that entails the goal are s1, s2,
and s3. The costs of the two-state direct sequences are the following: costseq(s4, s1) ≈
108.68, costseq(s4, s2) ≈ 1028.9, and costseq(s4, s3) ≈ 108.68; therefore, cbest = 108.68

and φbest = 〈s4, s3〉. Next, since we are assuming that s1-s5 are the only states for
the sake of brevity, the algorithm sets up a probability distribution P that starts out as
(0.2, 0.2, 0.2, 0.2, 0.2). Suppose we sample H = {〈s4, s5, s3〉, 〈s4, s5, s2〉, 〈s4, s1, s3〉}.
These sequences have respective costs of 109.23, 103.21, and 1021.71. The update step in
line 13 of the algorithm will then look at the two best sequences in H and, depending
on how it is implemented, might update P to (0.1, 0.1, 0.1, 0, 0.7). Thus, the algorithm
has learned that s4, s5 seems to be a good way to start. For brevity, suppose that the
next iteration of samples (the last one according to giveUp) contains 〈s4, s5, s1〉, whose
cost is ≈ 102.89; it is the best seen so far, and since 102.89 < k, it is a valid answer.

Next, we present the results of our experimental evaluation of this algorithm.

5 Empirical Evaluation

We carried out all experiments on an Intel Core2 Q6600 processor running at 2.4GHz
with 8GB of memory available, using code written in Java 1.6; all runs were preformed
on Windows 7 Ultimate 64-bit OS, and made use of a single core.

Cost-Based Query Answering in Action Probabilistic Logic Programs 329

First, we compare the run time and accuracy of the MDP formulation against that of
the DE CBQA algorithm. Recall that DE CBQA randomly selects states with respect
to a probability distribution that is updated from one iteration to the next. The simplest
way to represent this probability distribution is with a vector of size |S|, where the
element at position i represents the proportion of “good” samples that contained state i.
This representation does not scale as |S| increases; our implementation thus only keeps
track of the states we have visited, implicitly assigning proportion 0 to all nonvisited
states. Second, we explore instances of CBQA that are beyond the scope of the exact
MDP implementation, but within reach of the DE CBQA heuristic algorithm.

For all experiments, we assume an instance of the CBQA problem with ap-program
Π and cost-based query Q = 〈G : [�, u], s, costT , k〉. The required cost, transition, and
reward values for both algorithms are assigned randomly in accordance with their defi-
nitions. We assume an infinite budget for our experiments, choosing instead to compare
the numeric costs associated with the sequences returned by the algorithms.

Exact MDP versus Heuristic DE CBQA. Let SMDP and AMDP be the state and ac-
tion spaces of the MDP corresponding to a given CBQA – each iteration of the Value
Iteration algorithm requires O(|SMDP |2 · |AMDP |) time. From the transformation dis-
cussed in Section 4.1, we see that |AMDP | = |SMDP |; furthermore, since |SMDP |
is exponentially larger than the number of state atoms found in Π , we expect running
the multiple iterations of Value Iteration required to obtain an optimal policy to be
intractable for all but very small instances of our problem. Our experimental results
support this intuition.

For this set of experiments, we varied the number of state atoms, action atoms, and
ap-rules in an ap-program Π ; 10 unique ap-programs were created per combination
of these inputs. We tested 10 randomly generated cost, transition, and reward assign-
ments for each unique ap-program. Then, for each of these generations, we tested mul-
tiple runs of the MDP and DE CBQA algorithms. We varied the discount factor γ and
maximum error ε for the MDP4, while exploring different completion predicates, maxi-
mum and minimum sequence lengths, and number of iterations per sequence length for
DE CBQA. We provide a space-constrained overview of the results here.

Figure 4 compares the running time (log-scale) of both algorithms. Immediately clear
is the fact that, although increasing state and rule space size slows down both algo-
rithms, DE CBQA consistently outperforms the standard MDP implementation. More
subtle is the observation that the difference in run times between the two algorithms
increases with the number of states, with DE CBQA maintaining nearly constant run
time across small numbers of states as the MDP implementation increases noticeably.
This disparity is explained at least in part by the MDP’s optimality requirement; it re-
quires an exhaustive list of all goal states while DE CBQA can rely on faster heuristic
search methods (see [21]). As the state space increases, so too does the list of states that
must be tested for entailment of the goal ap-formula.

We now compare the costs of sequences returned by MDP and DE CBQA, as given
by Equation 1. Typically, the recommended sequences’ costs are close5; however, in

4 Given γ and ε, one can calculate an error threshold that gaurantees an optimal policy [24].
5 In terms of relative error, η = |v−v′|

|v| , for true cost v (MDP) and approx. cost v′ (DE CBQA).

330 G.I. Simari, J.P. Dickerson, and V.S. Subrahmanian

4 8 16 32 64

0.01

0.1

1

10

100

1000

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

Number of States

Av
er

ag
e

Ru
n�

m
e

(s
)

Number of Rules

MDP

DE_CBQA

Fig. 4. Log-scale run time comparison of MDP and DE CBQA, shown with increasing state size
(top axis) for each of 2, 4, 8, and 16 rules (bottom axis). Note the sharp jump in run time as the
number of rules increases compared to the gradual upward trend as the number of states rises.

rare cases, DE CBQA performs poorly. We believe this is due to the initial probability
distribution assigning mass uniformly to all states – meaning that “good” and “bad”
states are equally likely to be selected, at least initially. When DE CBQA randomly
selects bad states at the start, its ability to find better, lower-cost states in future iterations
is hampered. Given its low run time, one strategy for dealing with these fringe cases is
executing DE CBQA multiple times, selecting and returning the overall lowest-cost
sequence over all runs. In general, increasing the number of iterations (Line 8) did not
affect sequence cost; however, increasing the number of samples per iteration (Line 9)
often resulted in a better sequence. This hints that allowing the probability mass to
converge to a small number of states too quickly is not desirable, as low-cost candidates
that are not immediately evident can be ignored. Furthermore, increasing the minimum
and maximum sequence lengths (Lines 4 and 6) did not benefit the final result.

Finally, we tried using Policy Iteration [22] instead of Value Iteration to solve the
MDP; however, this method was either slower than Value Iteration or, if faster, forced
to use such a low discount factor γ and error limit ε that following the resultant policy
often yielded a worse sequence than DE CBQA’s recommendation – at a slower speed!

Scaling the Heuristic DE CBQA Algorithm. The MDP formulation of CBQA quickly
becomes intractable as Π becomes more complex. In this section, we discuss how
DE CBQA scales beyond the reach of MDP as the number of states, actions, and rules
increase. In order to avoid a direct exponential blowup when increasing the number of
rules, we made one small change to the algorithm: whenever no goal states are found
with the fast heuristics (line 1), it fails to return an answer; i.e., it takes a pessimistic
approach. Figure 5 compares an increase in number of states to a similar increase in
number of rules; observe that the number of rules seems to have a larger effect on
overall run time, with an increase in state space being barely noticeable. This is due to
two characteristics of our algorithm. First, the heuristic sampling strategy to find states
that entail the goal formula visits every rule, but not every state. Second, once entailing
states are found, the run time of the DE CBQA algorithm is not related to the size of the
state space at all. Following these intuitions, we see that the algorithm scales gracefully

Cost-Based Query Answering in Action Probabilistic Logic Programs 331

32 64 128 256 512

0.1

1

10

100

Number of States

Av
er

ag
e

Ti
m

e
(s

)

Number of Rules

Fig. 5. Log-scale run time as DE CBQA scales with respect to number of states (top axis) and
number of rules (bottom axis). Note the addition of extra rules slows down algorithm execution
time much more significantly than a similar increase in state space size.

Fig. 6. Towards the limits of our current implemen-
tation. Timing results taken by maximizing an in-
dividual parameter. The size of the state space was
limited by system memory in this implementation.

States Actions Rules Time (s)
4,096 220 4,096 35.817

64 225,600 1,024 6.881
64 220 16,384 213.511

to larger state/action spaces. In our experience, real-world instances of CBQA tend to
contain significantly fewer rules than states and actions [10]; as such, in these cases
DE CBQA scales quite well.

6 Conclusions and Future Work

In this paper, we introduce the Cost-based Query Answering Problem (CBQA), and
show that computing an optimal solution to this problem is computationally intractable,
both in theory and in practice. We then propose a heuristic algorithm (DE CBQA) based
on iterative random sampling and show experimentally that it provides comparably ac-
curate solutions in significantly less time. Finally, we show that DE CBQA scales to
very large problem sizes.

In the future, we will explore different formalisms used to learn the probability dis-
tribution in Line 13 of DE CBQA. Currently, we use a simple probability vector to
update weights for different states; however, such a representation assumes complete
independence between any pair of states. A model that takes into account relationships
between states (e.g., Bayesian or neural nets) could provide a more intelligent sampling
strategy. It is likely that we will see both a higher computational cost and higher quality
solutions as the complexity of the formalism increases.

Acknolwedgements. The authors were funded in part by AFOSR grant FA95500610405
and ARO grant W911NF0910206.

332 G.I. Simari, J.P. Dickerson, and V.S. Subrahmanian

References

1. Asal, V., Carter, J., Wilkenfeld, J.: Ethnopolitical violence and terrorism in the middle east.
In: Hewitt, J., Wilkenfeld, J., Gurr, T. (eds.) Peace and Conflict 2008, Paradigm (2008)

2. Bellman, R. A markovian decision process. J. Mathematics and Mechanics 6 (1957)
3. Bonet, J.S.D., Isbell Jr., C.L., Viola, P.A.: MIMIC: Finding optima by estimating probability

densities. In: Proceedings of NIPS 1996, pp. 424–430. MIT Press, Cambridge (1996)
4. Boutilier, C., Dearden, R., Goldszmidt, M.: Stochastic dynamic programming with factored

representations. Artificial Intelligence 121(1-2), 49–107 (2000)
5. Christiansen, H.: Implementing probabilistic abductive logic programming with constraint

handling rules. In: Schrijvers, T., Frühwirth, T. (eds.) Constraint Handling Rules. LNCS
(LNAI), vol. 5388, pp. 85–118. Springer, Heidelberg (2008)

6. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Information
and Computation 87(1/2), 78–128 (1990)

7. Giles, J.: Can conflict forecasts predict violence hotspots? New Scientist, 2647 (March 2008)
8. Hailperin, T.: Probability logic. Notre Dame J. Formal Logic 25(3), 198–212 (1984)
9. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the

power of maximum entropy. Artif. Intell. 157(1-2), 139–202 (2004)
10. Khuller, S., Martinez, M.V., Nau, D.S., Sliva, A., Simari, G.I., Subrahmanian, V.S.: Com-

puting most probable worlds of action probabilistic logic programs: scalable estimation for
10ˆ30,000 worlds. AMAI 52(2-4), 295–331 (2007)

11. Littman, M.L.: Algorithms for Sequential Decision Making. PhD thesis, Department of Com-
puter Science, Brown University, Providence, RI (February 1996)

12. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
13. Mannes, A., Michael, M., Pate, A., Sliva, A., Subrahmanian, V.S., Wilkenfeld, J.: Stochas-

tic opponent modelling agents: A case study with Hezbollah. In: Liu, H., Salerno, J. (eds.)
Proceedings of IWSCBMP (2008)

14. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computa-
tion 101(2), 150–201 (1992)

15. Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective and condi-
tional probabilities in deductive databases. J. Autom. Reas. 10(2), 191–235 (1993)

16. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)
17. Pelikan, M., Goldberg, D.E., Lobo, F.G.: A survey of optimization by building and using

probabilistic models. Comput. Optim. Appl. 21(1), 5–20 (2002)
18. Poole, D.: Probabilistic horn abduction and bayesian networks. Artif. Intell. 64(1), 81–129

(1993)
19. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty.

Artif. Intell. 94(1-2), 7–56 (1997)
20. Puterman, M.L.: Markov decision processes: Discrete stochastic dynamic programming.

John Wiley & Sons, Inc., Chichester (1994)
21. Simari, G.I., Subrahmanian, V.S.: Abductive inference in probabilistic logic programs. In:

Proceedings of ICLP 2010 (Tech. Comm.) (to appear, 2010)
22. Tseng, P.: Solving H-horizon, stationary Markov decision problems in time proportional to

log(H). Operations Research Letters 9(5), 287–297 (1990)
23. Tsitsiklis, J., van Roy, B.: Feature-based methods for large scale dynamic programming.

Machine Learning 22(1/2/3), 59–94 (1996)
24. Williams, R., Baird, L.: Tight performance bounds on greedy policies based on imperfect

value functions. In: 10th Yale Workshop on Adaptive and Learning Systems (1994)

	Cost-Based Query Answering in Action Probabilistic Logic Programs
	Introduction
	Preliminaries
	Syntax
	Semantics of ap-Programs

	The Cost-Bounded Query Answering Problem
	CBQA Algorithms for Threshold Queries
	An Exact Algorithm for CBQA
	A Heuristic Algorithm Based on Iterative Sampling

	Empirical Evaluation
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

