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Abstract

Standard adversarial attacks change the predicted class label
of a selected image by adding specially tailored small pertur-
bations to its pixels. In contrast, a universal perturbation is an
update that can be added to any image in a broad class of im-
ages, while still changing the predicted class label. We study
the efficient generation of universal adversarial perturbations,
and also efficient methods for hardening networks to these at-
tacks. We propose a simple optimization-based universal at-
tack that reduces the top-1 accuracy of various network ar-
chitectures on ImageNet to less than 20%, while learning the
universal perturbation 13× faster than the standard method.
To defend against these perturbations, we propose univer-
sal adversarial training, which models the problem of robust
classifier generation as a two-player min-max game, and pro-
duces robust models with only 2× the cost of natural training.
We also propose a simultaneous stochastic gradient method
that is almost free of extra computation, which allows us to
do universal adversarial training on ImageNet.

1 Introduction
Deep neural networks (DNNs) are vulnerable to adversar-
ial examples, in which small and often imperceptible per-
turbations change the class label of an image (Szegedy et
al., 2013; Goodfellow, Shlens, and Szegedy, 2014; Nguyen,
Yosinski, and Clune, 2015; Papernot et al., 2016). Many
works have shown that these vulnerabilities can be exploited
by showing real world attacks on face detection (Sharif et
al., 2016), object detection (Wu et al., 2019), and copyright
detection (Saadatpanah, Shafahi, and Goldstein, 2019).

Adversarial examples were originally formed by selecting
a single example, and sneaking it into a different class using
a small perturbation (Carlini and Wagner, 2017b). This is
done most effectively using (potentially expensive) iterative
optimization procedures (Dong et al., 2017; Madry et al.,
2018; Athalye, Carlini, and Wagner, 2018).

Different from per-instance perturbation attacks,
Moosavi-Dezfooli et al. (2017b,a) show there exists “uni-
versal” perturbations that can be added to any image to
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Universal
Perturbation

Figure 1: A universal perturbation made using a subset of
ImageNet and the VGG-16 architecture. When added to the
validation images, their labels usually change. The perturba-
tion was generated using the proposed algorithm 2. Pertur-
bation pixel values lie in [−10, 10] (i.e. ε = 10).

change its class label (fig. 1) with high probability. Univer-
sal perturbations empower attackers who cannot generate
per-instance adversarial examples on the go, or who want to
change the identity of an object to be selected later in the
field. Also, universal perturbations have good cross-model
transferability, which facilitates black-box attacks.

Among various methods for hardening networks to per-
instance attacks, adversarial training (Madry et al., 2018) is
known to dramatically increase robustness Athalye, Carlini,
and Wagner (2018). In this process, adversarial examples are
produced for each mini-batch during training, and injected
into the training data. While effective at increasing robust-
ness against small perturbations, it is not effective for larger
perturbations which are often the case for universal pertur-
bations. Also, the high cost of this process precludes its use
on large and complex datasets.

Contributions This paper studies effective methods for
producing and deflecting universal adversarial attacks. First,
we pose the creation of universal perturbations as an opti-
mization problem that can be effectively solved by stochas-
tic gradient methods. This method dramatically reduces the
time needed to produce attacks as compared to Moosavi-
Dezfooli et al. (2017b). The efficiency of this formulation
empowers us to consider universal adversarial training. We
formulate the adversarial training problem as a min-max op-
timization where the minimization is over the network pa-
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rameters and the maximization is over the universal pertur-
bation. This problem can be solved quickly using alternating
stochastic gradient methods with no inner loops, making it
far more efficient than per-instance adversarial training with
a strong adversary (which requires a PGD inner loop to gen-
erate adversarial perturbations). Prior to our work, it was ar-
gued that adversarial training on universal perturbations is
infeasible because the inner optimization requires the gener-
ation of a universal perturbation from scratch using many ex-
pensive iterations (Perolat et al., 2018). We further improve
the defense efficiency by providing a “low-cost” algorithm
for defending against universal perturbations. Through ex-
periments on CIFAR-10 and ImageNet, we show that this
“low-cost” method works well in practice. Note, the ap-
proach first introduced here has been expanded on to create a
range of “free” adversarial training strategies with the same
cost as standard training (Shafahi et al., 2019).

2 Related work
We briefly review per-instance perturbation attack tech-
niques that are closely related to our paper and can be
used during the universal perturbation update step of uni-
versal adversarial training. The Fast Gradient Sign Method
(FGSM) (Goodfellow, Shlens, and Szegedy, 2014) is one
of the most popular one-step gradient-based approaches for
`∞-bounded attacks. FGSM applies one step of gradient as-
cent in the direction of the sign of the gradient of the loss
function with respect to the input image. When a model is
FGSM adversarially trained, the gradient of the loss function
may be very small near unmodified images. In this case, the
R-FGSM method remains effective by first using a random
perturbation to step off the image manifold, and then ap-
plying FGSM (Tramèr et al., 2018). Projected Gradient De-
scent (PGD) (Madry et al., 2018) iteratively applies FGSM
multiple times, and is one of the strongest per-instance at-
tacks (Athalye, Carlini, and Wagner, 2018). The PGD ver-
sion of Madry et al. (2018) applies an initial random per-
turbation before multiple steps of gradient ascent and pro-
jection of perturbation onto the norm-ball of interest, and
in a standard projected gradient method (Goldstein, Studer,
and Baraniuk, 2014). Finally, DeepFool (Moosavi-Dezfooli,
Fawzi, and Frossard, 2016) is an iterative method based on
a linear approximation of the training loss objective.

Adversarial training, in which adversarial examples are
injected into the dataset during training, is an effective
method to learn a robust model resistant to per-instance at-
tacks (Madry et al., 2018; Huang et al., 2015; Shaham, Ya-
mada, and Negahban, 2015; Sinha, Namkoong, and Duchi,
2018). Robust models adversarially trained with FGSM can
resist FGSM attacks (Kurakin, Goodfellow, and Bengio,
2017), but can be vulnerable to PGD attacks (Madry et al.,
2018). Madry et al. (2018) suggest strong attacks are im-
portant, and they use the iterative PGD method in the inner
loop for generating adversarial examples when optimizing
the min-max problem. PGD adversarial training is effective
but time-consuming when the perturbation is small. The cost
of the inner PGD loop is high, although this can sometimes
be replaced with neural models for attack generation (Baluja
and Fischer, 2018; Poursaeed et al., 2018; Xiao et al., 2018).

These robust models are adversarially trained to fend off per-
instance perturbations and have not been designed for, or
tested against, universal perturbations.

Unlike per-instance perturbations, universal perturbations
can be directly added to any test image to fool the classifier.
In Moosavi-Dezfooli et al. (2017b), universal perturbations
for image classification are generated by iteratively optimiz-
ing the per-instance adversarial loss for training samples us-
ing DeepFool. In addition to classification tasks, universal
perturbations are also shown to exist for semantic segmen-
tation (Metzen et al., 2017). Robust universal adversarial
examples are generated as a universal targeted adversarial
patch in Brown et al. (2017). They are targeted since they
cause misclassification of the images to a given target class.
Moosavi-Dezfooli et al. (2017a) prove the existence of small
universal perturbations under certain curvature conditions of
decision boundaries. Data-independent universal perturba-
tions are also shown to exist and can be generated by max-
imizing spurious activations at each layer. These universal
perturbations are slightly weaker than the data dependent
approaches (Mopuri, Garg, and Babu, 2017; Mopuri, Gane-
shan, and Radhakrishnan, 2018). As a variant of universal
perturbation, unconditional generators are trained to create
perturbations from random noises for attack (Reddy Mopuri,
Krishna Uppala, and Venkatesh Babu, 2018; Reddy Mopuri
et al., 2018). Universal perturbations are often larger than
per-instance perturbation. For example on ImageNet, uni-
versal perturbations generated in prior works have `∞ per-
turbations of size ε = 10 while non-targeted per-instance
perturbations as small as ε = 2 are often enough to con-
siderably degrade the performance of conventionally trained
classifiers possibly due to the fact that ImageNet is a com-
plex dataset and is fundamentally susceptible to per-instance
perturbations (Shafahi et al., 2018). As a consequence, from
a defense perspective, per-instance defenses on ImageNet
focus on smaller perturbations compared to universal per-
turbations.

There has been very little work on defending against uni-
versal attacks. To the best of our knowledge, the only ded-
icated study is by Akhtar, Liu, and Mian (2018), who pro-
pose a perturbation rectifying network that pre-processes in-
put images to remove the universal perturbation. The recti-
fying network is trained on universal perturbations that are
built for the downstream classifier. While other methods of
data sanitization exist (Samangouei, Kabkab, and Chellappa,
2018; Meng and Chen, 2017) , it has been shown (at least for
per-instance adversarial examples) that this type of defense
is easily subverted by an attacker who is aware that a defense
network is being used (Carlini and Wagner, 2017a).

Two recent preprints (Perolat et al., 2018; Mummadi,
Brox, and Metzen, 2018) model the problem of defend-
ing against universal perturbations as a two-player min-max
game. However, unlike us, and similar to per-instance ad-
versarial training, after each gradient descent iteration for
updating the DNN parameters, they generate a universal ad-
versarial example in an iterative fashion. Since the genera-
tion of universal adversarial perturbations can be very time-
consuming, this makes their approach slow and prevents
them from training the DNN parameters for many iterations.



Algorithm 1 Iterative solver for universal perturbations
(Moosavi-Dezfooli et al., 2017b)

Initialize δ ← 0
while Prob(X, δ) < 1− ξ do

for xi in X do
if f(w, xi + δ) 6= f(w, xi) then

Solve minr ‖r‖2 s.t. f(w, xi + δ + r) 6= f(w, xi)
by DeepFool

Update δ ← δ + r, then project δ to `p ball
end if

end for
end while

3 Optimization for universal perturbation
Given a set of training samplesX = {xi, i = 1, . . . , N} and
a network f(w, ·) with frozen parameterw that maps images
onto labels, Moosavi-Dezfooli et al. (2017b) propose to find
universal perturbations δ that satisfy,

‖δ‖p ≤ ε and Prob(X, δ) ≥ 1− ξ, (1)

Prob(X, δ) represents the “fooling ratio,” which is the frac-
tion of images x whose perturbed class label f(w, x + δ)
differs from the original label f(w, x). The parameter ε con-
trols the `p diameter of the bounded perturbation, and ξ is
a small tolerance hyperparameter. Problem (1) is solved by
the iterative method in algorithm 1. This solver relies on
an inner loop to apply DeepFool to each training instance,
which makes the solver slow. Moreover, the outer loop of
algorithm 1 is not guaranteed to converge. Different from
Moosavi-Dezfooli et al. (2017b), we consider the following
optimization problem for building universal perturbations,

max
δ
L(w, δ) = 1

N

N∑
i=1

l(w, xi + δ) s.t. ‖δ‖p ≤ ε, (2)

where l(w, ·) represents the loss used for training DNNs.
This simple formulation (2) searches for a universal pertur-
bation that maximizes the training loss, and thus forces im-
ages into the wrong class.

The naive formulation (2) suffers from a potentially sig-
nificant drawback; the cross-entropy loss is unbounded from
above, and can be arbitrarily large when evaluated on a sin-
gle image. In the worst-case, a perturbation that causes mis-
classification of just a single image can maximize (2) by
forcing the average loss to infinity. To force the optimizer
to find a perturbation that fools many instances, we propose
a “clipped” version of the cross entropy loss,

l̂(w, xi + δ) = min{l(w, xi + δ), β}. (3)

We cap the loss function at β to prevent any single image
from dominating the objective in (2), and giving us a bet-
ter surrogate of misclassification accuracy. In section 5, we
investigate the effect of clipping with different β.

We directly solve eq. (2) by a stochastic gradient method
described in algorithm 2. Each iteration begins by using
gradient ascent to update the universal perturbation δ so
that it maximizes the loss. Then, δ is projected onto the
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Figure 2: Classification accuracy on adversarial examples of
universal perturbations generated by increasing the cross-
entropy loss. PGD and ADAM converge faster. We use 5000
training samples from CIFAR-10 for constructing the uni-
versal adversarial perturbation for naturally trained WRN
model from Madry et al. (2018). The batch-size is 128, ε=8,
and the learning-rate/step-size is 1.

(a) SGD (b) MSGD (c) ADAM (d) PGD

Figure 3: Visualizations of universal perturbations after 160
iterations of the optimizers depicted in fig. 2.

`p-norm ball to prevent it from growing too large. We ex-
periment with various optimizers for this ascent step, in-
cluding Stochastic Gradient Descent (SGD), Momentum
SGD (MSGD), Projected Gradient Descent (PGD), and
ADAM (Kingma and Ba, 2014).

Algorithm 2 Stochastic gradient for universal perturbation

for epoch = 1 . . . Nep do
for minibatch B ⊂ X do

Update δ with gradient variant δ ← δ + g
Project δ to `p ball

end for
end for

We test this method by attacking a naturally trained WRN
32-10 architecture on the CIFAR-10 dataset. We use ε = 8
for the `∞ constraint for CIFAR. Stochastic gradient meth-
ods that use “normalized” gradients (ADAM and PGD) are
less sensitive to learning rate and converge faster, as shown
in fig. 2. We visualize the generated universal perturbation
from different optimizers in fig. 3. Compared to the noisy
perturbation generated by SGD, normalized gradient meth-
ods produced stronger attacks with more well-defined geo-
metric structures and checkerboard patterns. The final eval-
uation accuracies (on test-examples) after adding universal
perturbations with ε = 8 were 42.56% for the SGD pertur-
bation, 13.08% for MSGD, 13.30% for ADAM, and 13.79%
for PGD. The clean test accuracy of the WRN is 95.2%.



Our proposed method of universal attack using a clipped
loss function has several advantages. It is based on a stan-
dard stochastic gradient method that comes with conver-
gence guarantees when a decreasing learning rate is used
(Bottou, Curtis, and Nocedal, 2018). Also, each iteration is
based on a minibatch of samples instead of one instance,
which accelerates computation on a GPU. Finally, each iter-
ation requires a simple gradient update instead of the com-
plex DeepFool inner loop; we empirically verify fast conver-
gence and good performance of the proposed method (see
section 5).

4 Universal adversarial training
We now consider training robust classifiers that are resistant
to universal perturbations. Similar to Madry et al. (2018),
we borrow ideas from robust optimization. We use robust
optimization to build robust models that can resist universal
perturbations. In particular, we consider universal adversar-
ial training, and formulate this problem as a min-max opti-
mization problem,

min
w

max
‖δ‖p≤ε

L(w, δ) = 1

N

N∑
i=1

l(w, xi + δ) (4)

where w represents the neural network weights, X =
{xi, i = 1, . . . , N} represents training samples, δ represents
universal perturbation noise, and l(·) is the loss function.
Here, unlike conventional adversarial training, our δ is a uni-
versal perturbation (or, more accurately, mini-batch univer-
sal). Previously, solving this optimization problem directly
was deemed computationally infeasible due to the large cost
associated with generating a universal perturbation (Perolat
et al., 2018), but we show that eq. (4) is efficiently solvable
by alternating stochastic gradient methods shown in algo-
rithm 3. We show that unlike Madry et al. (2018), updat-
ing the universal perturbation only using a simple step is
enough for building universally hardened networks. Each it-
eration alternatively updates the neural network weights w
using gradient descent, and then updates the universal per-
turbation δ using ascent.

Algorithm 3 Alternating stochastic gradient method for ad-
versarial training against universal perturbation

Input: Training samples X , perturbation bound ε, learning
rate τ , momentum µ
for epoch = 1 . . . Nep do

for minibatch B ⊂ X do
Update w with momentum stochastic gradient

gw ← µgw − Ex∈B [∇w l(w, x+ δ)]
w ← w + τgw

Update δ with stochastic gradient ascent
δ ← δ + ε sign(Ex∈B [∇δ l(w, x+ δ)])

Project δ to `p ball
end for

end for

We compare our formulation (4) and algorithm 3 with
PGD-based adversarial training, which trains a robust model

by optimizing the following min-max problem,

min
w

max
Z

1

N

N∑
i=1

l(w, zi) s.t. ‖Z −X‖p ≤ ε. (5)

The standard formulation (5) searches for per-instance per-
turbed imagesZ, while our formulation in (4) maximizes us-
ing a universal perturbation δ. Madry et al. (2018) solve (5)
by a stochastic method. In each iteration, an adversarial ex-
ample zi is generated for an input instance by the PGD itera-
tive method, and the DNN parameterw is updated once. Our
formulation (algorithm 3) only maintains one single pertur-
bation that is used and refined across all iterations. For this
reason, we need only update w and δ once per step (there is
no expensive inner loop), and these updates accumulate for
both w and δ through training.

We consider different rules for updating δ during univer-
sal adversarial training,

FGSM δ ← δ + ε · sign(Ex∈B [∇δl(w, x+ δ)]), (6)
SGD δ ← δ + τδ · Ex∈B [∇δl(w, x+ δ)], (7)

and ADAM. We found that the FGSM update rule was most
effective when combined with the SGD optimizer for updat-
ing DNN weights w.

We use fairly standard training parameters in our exper-
iments. In our CIFAR experiments, we use ε = 8, batch-
size of 128, and we train for 80,000 steps. For the optimizer,
we use Momentum SGD with an initial learning rate of 0.1
which drops to 0.01 at iteration 40,000 and drops further
down to 0.001 at iteration 60,000. One way to assess the up-
date rule is to plot the model accuracy before and after the
ascent step (i.e., the perturbation update). It is well-known
that adversarial training is more effective when stronger at-
tacks are used. In the extreme case of a do-nothing adver-
sary, the adversarial training method degenerates to natural
training. As illustrated in the supplementary, we see a gap
between the accuracy curves plotted before and after gra-
dient ascent. We find that the FGSM update rule leads to a
larger gap, indicating a stronger adversary. Correspondingly,
we find that the FGSM update rule yields networks that are
more robust to attacks as compared to SGD update.

Attacking hardened models
We evaluate the robustness of different models by applying
algorithm 2 to find universal perturbations. We attack univer-
sally adversarial trained models (produced by eq. (4)) using
the FGSM universal update rule (uFGSM), or the SGD uni-
versal update rule (uSGD). We also consider robust models
from per-instance adversarial training (eq. (5)) with adver-
sarial steps of the FGSM and PGD type.

Robust models adversarially trained with weaker attack-
ers such as uSGD and (per-instance) FGSM are relatively
vulnerable to universal perturbations, while robust models
from (per-instance) PGD and uFGSM can resist universal
perturbations. We plot the universal perturbations gener-
ated using algorithm 3 in fig. 4. When we visually com-
pare the universal perturbations of robust models (fig. 4)
and those of a naturally trained model (fig. 3), we can see



(a) FGSM (b) PGD (c) uFGSM (d) uSGD

Figure 4: Universal perturbations made (with 400 itera-
tions) for 4 different CIFAR-10 robust models: adversarially
trained with FGSM or PGD, and universally adversarially
trained with FGSM (uFGSM) or SGD (uSGD).

Table 1: Validation accuracy of hardened WideResnet mod-
els trained on CIFAR-10. Note that Madry’s PGD training is
significantly slower than the other training methods.

Validation Accuracy on
UnivPert Natural

(Robust)
models
trained
with

Natural 9.2% 95.2%
FGSM 51.0% 91.42%
PGD 86.1% 87.25%

uADAM (ours) 91.6% 94.28%
uFGSM (ours) 91.8% 93.50%

a drastic change in structure. Similarly, even among hard-
ened models, universal perturbations generated for weaker
robust models have more geometric textures, as shown in
fig. 4 (a,d).

While an ε-bounded per-instance robust model is also ro-
bust against ε-bounded universal attacks since the univer-
sal attack is a more constrained version of the per-instance
attack, training robust per-instance models is only possible
for small datasets like CIFAR and for small ε. For larger
datasets like ImageNet, we cannot train per-instance robust
models with such large ε’s common for universal attacks.
However, we include the per-instance adversarially trained
model as a candidate universally robust model for CIFAR-10
in our comparisons to allow comparisons in settings where
it is possible to train per-instance robust models.

We apply the strongest attack to validation images of the
natural model and various universal adversarially trained
models using different update steps. The results are sum-
marized in table 1. Our models become robust against uni-
versal perturbations and have higher accuracies on natural
validation examples compared to per-instance adversarially
trained models. Their robustness is even more if attacked
with iDeepFool (93.29%). Compared to the per-instance
FGSM trained model which has the same computational cost
as ours, our universal model is more robust. Note that the
PGD trained model is trained on a 7-step per-instance ad-
versary and requires about 4× more computation than ours.

Low-cost universal adversarial training
As shown in table 1, our proposed algorithm 3 was able
to harden the CIFAR-10 classification network. This comes
at the cost of doubling the training time. Adversarial train-
ing in general should have some cost since it requires the
generation or update of the adversarial perturbation of the

mini-batch before each minimization step on the network’s
parameters. However, since universal perturbations are ap-
proximately image-agnostic, results should be fairly invari-
ant to the order of updates. For this reason, we propose to
compute the image gradient needed for the perturbation up-
date during the same backward pass used to compute the
parameter gradients. This results in a simultaneous update
for network weights and the universal perturbation in algo-
rithm 4, which backprops only once per iteration and pro-
duces approximately universally robust models at almost no
cost in comparison to natural training. The “low-cost univer-
sal adversarially trained” model of CIFAR-10 is 86.1% ro-
bust against universal perturbations and has 93.5% accuracy
on the clean validation examples. When compared to the
original version in table 1, the robustness has only slightly
decreased. However, the training time is cut by half. This
is a huge improvement in efficiency, in particular for large
datasets like ImageNet with long training times.

Algorithm 4 Simultaneous stochastic gradient method for
adversarial training against universal perturbation

Input: Training samples X , perturbation bound ε, learning
rate τ , momentum µ
Initialize w, δ
for epoch = 1 . . . Nep do

for minibatch B ⊂ X do
Compute gradient of loss with respect to w and δ

dw ← Ex∈B [∇w l(w, x+ δ)]
dδ ← Ex∈B [∇δ l(w, x+ δ)]

Update w with momentum stochastic gradient
gw ← µgw − dw
w ← w + τgw

Update δ with stochastic gradient ascent
δ ← δ + εsign(dδ)

Project δ to `p ball
end for

end for

5 Universal perturbations for ImageNet
To validate the performance of our proposed optimization
on different architectures and more complex datasets, we
apply algorithm 2 to various popular architectures designed
for classification on the ImageNet dataset (Russakovsky et
al., 2015). We compare our method of universal perturba-
tion generation with the current state-of-the-art method, it-
erative DeepFool (iDeepFool for short – alg. 1). We use the
authors’ code to run the iDeepFool attack on these classi-
fication networks. We execute both our method and iDeep-
Fool on the exact same 5000 training data points and ter-
minate both methods after 10 epochs. We use ε = 10 for
`∞ constraint following Moosavi-Dezfooli et al. (2017b),
use a step-size of 1.0 for our method, and use suggested pa-
rameters for iDeepFool. Similar conclusions could be drawn
when we use `2 bounded attacks. We independently execute
iDeepFool since we are interested in the accuracy of the clas-
sifier on attacked images – a metric not reported in Moosavi-



Dezfooli et al. (2017b) 1.

Benefits of the proposed method We compare the perfor-
mance of our stochastic gradient method for eq. (2) and the
iDeepFool method for eq. (1). We generate universal per-
turbations for Inception (Szegedy et al., 2016) and VGG
(Simonyan and Zisserman, 2014) networks trained on Im-
ageNet, and report the top-1 accuracy in table 2. Universal
perturbations generated by both iDeepFool and our method
fool networks and degrade the classification accuracy. Uni-
versal perturbations generated for the training samples gen-
eralize well and cause the accuracy of validation samples
to drop. However, when given a fixed computation budget
such as number of passes on the training data, our method
outperforms iDeepFool by a large margin. Our stochastic
gradient method generates the universal perturbations at a
much faster pace than iDeepFool. About 20× faster on In-
ceptionV1 and 6× on VGG16 (13× on average).

After verifying the effectiveness and efficiency of our pro-
posed stochastic gradient method2, we use our algorithm 2
to generate universal perturbations for ResNet-V1 152 (He
et al., 2016) and Inception-V3. Our attacks degrade the val-
idation accuracy of ResNet-V1 152 and Inception-V3 from
76.8% and 78% to 16.4% and 20.1%, respectively. The fi-
nal universal perturbations used for the results presented are
illustrated in the supplementary.

Table 2: Top-1 accuracy on ImageNet for natural images,
and adversarial images with universal perturbation.

InceptionV1 VGG16

Natural Train 76.9% 81.4 %
Val 69.7% 70.9%

iDeepFool Train 43.5% 39.5%
Val 40.7% 36.0%

Ours Train 17.2% 23.1%
Val 19.8% 22.5%

iDeepFool time (s) 9856 6076
our time (s) 482 953

The effect of clipping Here, we analyze the effect of the
“clipping” loss parameter β in eq. (2). For this purpose, sim-
ilar to our other ablations, we generate universal perturba-
tions by solving eq. (2) using PGD for Inception-V3 on Im-
ageNet. We run each experiment with 5 random subsets of
training data. The accuracy reported is the classification ac-
curacy on the entire validation set of ImageNet after adding
the universal perturbation. The results are summarized in
fig. 5. The results showcase the value of our proposed loss
function for finding universal adversarial perturbations.

1They report “fooling ratio” which is the ratio of examples
who’s label prediction changes after applying the universal pertur-
bation. This has become an uncommon metric since the fooling
ratio can increase if the universal perturbation causes an example
that was originally miss-classified to become correctly classified.

2Unless otherwise specified, we use the sign-of-gradient PGD
for our stochastic gradient optimizer in algorithm 2.
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Figure 5: Attack performance varies with clipping parameter
β in eq. (2). Attacking Inception-V3 is more successful with
clipping (β = 9) than without clipping (β =∞).
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Figure 6: Attack success significantly improves when the
number of training points is larger than number of classes.
For reference, Inception-V3’s top-1 accuracy is 78%.Nep in
algorithm 2 was set to 100 epochs for 500 data samples, 40
for 1000 and 2000 samples, and 10 for more.

How much training data does the attack need? As in
Moosavi-Dezfooli et al. (2017b), we analyze how the num-
ber of training points (|X|) affects the strength of universal
perturbations in fig. 6. We build δ using varying amounts of
training data. For each experiment, we report the accuracy
on the entire validation set after we add the perturbation δ.

6 Universal adversarial training ImageNet
In this section, we analyze our robust models that are uni-
versal adversarially trained by solving the min-max prob-
lem (section 4) using algorithm 3. We use ε = 10 for Ima-
geNet. Note that unlike CIFAR where we were able to train
a per-instance PGD-7 robust model with ε = 8, for Ima-
geNet, there exists no model which can resist per-instance
non-targeted perturbations with such large ε. For ImageNet,
we again use fairly standard training parameters (90 epochs,
batch-size 256).

Since our universal adversarial training algorithm (algo-
rithm 3) is cheap, it scales to large datasets such as Ima-
geNet. We first train an AlexNet model on ImageNet. We use
the natural training hyper-parameters for universal adversar-
ially training our AlexNet model. Also, we separately use
our “low-cost universal training” algorithm to train a robust
AlexNet with no overhead cost. We then attack the natural,
universally trained, and no-cost universally trained versions
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Figure 7: Universal perturbations fool naturally trained AlexNet on ImageNet, but fail to fool our robust AlexNets. The uni-
versal perturbations generated for the universal adversarial trained AlexNets have little geometric structure compared to that of
naturally trained nets. (b) Universal perturbation of natural model. The accuracy of the validation images + noise is only 3.9%
(c) Perturbation for our universally trained model using algorithm 3. The accuracy of the validation images + noise is 42.0%.
(d) Perturbation for the model trained with low-cost universal training variant (algorithm 4). The accuracy of the validation
images + noise is 28.3%. While the universal noise for the low-cost variant of universal adversarial training has some structure
compared to the original, it is less structured than an attack on the natural model (b). Curves smoothed for better visualization.

of AlexNet using universal attacks.
As seen in fig. 7 (a), the AlexNet trained using our uni-

versal adversarial training algorithm (algorithm 3) is robust
against universal attacks generated using both algorithm 1
and algorithm 2. The naturally trained AlexNet is suscepti-
ble to universal attacks. The final attacks generated for the
robust and natural models are presented in fig. 7 (b,c,d).
The universal perturbation generated for the robust AlexNet
model has little structure compared to the universal pertur-
bation built for the naturally trained AlexNet. This is similar
to the trend we observed in fig. 3 and fig. 4 for the WRN
models trained on CIFAR-10.

The accuracy of the universal perturbations on the valida-
tion examples are summarized in table 3. Similar to CIFAR-
10, the low-cost version of universal adversarial training is
robust but not as robust as the main method. We also train

Table 3: Accuracy on ImageNet for nat and robust models.

Training
Evaluated Against

Natural Images Universal Attack
Top-1 Top-5 Top-1 Top-5

Natural 56.4% 79.0 % 3.9 % 9.4 %
Universal 49.5% 72.7% 42.0% 65.8 %

Low-cost U. 48.4% 72.4% 28.3% 48.3 %

a universally robust ResNet-101 ImageNet model. While a
naturally trained ResNet-101 achieves only 7.23% accuracy
on universal perturbations, our ResNet-101 achieves 74.43%
top1 and 92.00% top5 accuracies.

7 Conclusion
We proposed using stochastic gradient methods and a
“clipped” loss function as an effective universal attack that
generates universal perturbations much faster than previous
methods. To defend against universal perturbations, we pro-
posed to train robust models by optimizing a min-max prob-
lem using alternating or simultaneous stochastic gradient

methods. We show that this is possible using certain univer-
sal noise update rules that use “normalized” gradients. The
simultaneous stochastic gradient method comes at almost no
extra cost compared to natural training and has almost no ad-
ditional cost compared to conventional training.
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A Training curves for UAT
In fig. 8, we present training curves for the CIFAR-10 uni-
versal adversarial training process on the WideResnet 32-10
architecture.

As seen in fig. 8, the gap before and after ascent is largest
when the FGSM update rule for universal perturbations is
used. Also, in fig. 9 we can see that the universal adversari-
ally trained model that uses the FGSM update rule (uFGSM)
for its maximization step yeilds the most robust model.

B Universal perturbations using different
optimizers

We apply PGD (using the sign of the gradient) and ADAM
in algorithm 3 to generate universal perturbations for these
robust models, and show such perturbations in fig. 10.

C Universal perturbations for various
ImageNet architectures

In fig. 11, we plot various universal perturbations found us-
ing our “clipped” loss attack. Changing the mini-batch size
for generating the perturbations, sometimes causes the per-
turbations for the same architecture to look slightly different.

D Comparison with iDeepFool on other
datasets

To ensure that our universal perturbation generation algo-
rithm’s performance gain over iDeepFool is not only on
ImageNet, we conduct experiments on the WRN 32-10 for
CIFAR-10 and LeNet for MNIST. To generate the universal
perturbations using both algorithms, we use 5000 training
examples and do 10 passes over the data. For CIFAR-10,
similar, to the main experiments in the paper, we use ε = 8.
For MNIST, we use ε = 76.5. The accuracy on the valida-
tion images augmented with the universal perturbation are
summarized in table 4.

E Visualizing attacks on robust models
Tsipras et al. (2018) use several visualization techniques to
analyze PGD-based robust models and show some unex-
pected benefits of adversarial robustness. Similarly, we gen-
erate large ε `∞ per-instance adversarial examples using a
PGD attack without random initialization. Large ε perturba-
tions make the perturbations visible. Adversarial examples
built in this way for both a natural model and our robust
model are illustrated in fig. 12. Many of the adversarial ex-
amples of the natural model look similar to the original im-
age and have a lot of “random” noise on the background,

Table 4: Top-1 accuracy on CIFAR and MNIST for natural
images, and adversarial images with universal perturbations.

CIFAR-10 MNIST
Natural Val 95.2% 99.3%

iDeepFool Val 20.0% 24.87%
Ours Val 13.9% 5.7%
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Figure 8: Classification accuracy for (adversarial) training
of (robust) models with (top) FGSM update and (bottom)
ADAM update. We show the accuracy before and after the
gradient ascent for δ in algorithm 3. We omitted the figure
for SGD update because the gap between the two curves for
SGD is invisible.
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Figure 9: Classification accuracy on training data when the
universal perturbations are updated with the ADAM opti-
mizer. We use 5000 training samples from CIFAR-10 for
constructing the universal adversarial perturbation for an
adversarially trained WideResnet model from Madry et al.
(2018). The batch-size is 128, ε=8, and the lr/step-size is 1.

while adversarial examples for our robust model produce
salient characteristics of another class and align well with
human perception. The elimination of structured universal
perturbations during universal adversarial training seems to



(a) FGSM (b) PGD (c) uFGSM (d) uSGD

(e) FGSM (f) PGD (g) uFGSM (h) uSGD

Figure 10: The universal perturbations made using PGD and
ADAM for 4 different robust models trained on CIFAR-10:
adversarially trained with FGSM or PGD, and universally
adversarially trained with FGSM (uFGSM) or SGD (uSGD).
Perturbations were made using 400 iterations. The top row
perturbations are made using PGD and the bottom row per-
turbations are made using ADAM.

have this interesting side-effect that was only recently shown
for PGD adversarial training.

F Defense Against per-instance attacks
Interestingly, while our universal adversarial training alg. 3
is for training models that are robust to universal perturba-
tions, we see that when using a strong update rule, the hard-
ened models become robust against `∞ per-instance white-
box attacks generated using a 20-step PGD attack. While
training with the “normalized” (FGSM and ADAM) univer-
sal perturbation update rules result in models that resist uni-
versal perturbations, the FGSM update rule produces mod-
els that are more resistant against per-instance attacks com-
pared to the ADAM update rule. The accuracy of a uni-
versally hardened network against a white-box per-instance
PGD attack is 17.21% for FGSM universal training, and
only 2.57% for ADAM universal training. When compared
to FGSM per-instance adversarial training, which has com-
parable computation cost, the universally robust model is
even more robust against per-instance attacks! FGSM per-
instance adversarial training achieves 0.00% accuracy on
per-instance adversarial examples built using the same PGD
attack setting. More per-instance comparisons are provided
in the supplementary material.

Defense against white-box attack
We compare our universal adversarially trained model’s ro-
bustness with other hardened models against white-box at-
tacks, where the (robust) models are fully revealed to the
attackers. We attack the hardened and natural models us-
ing universal perturbations and per-instance perturbations
(FGSM Goodfellow, Shlens, and Szegedy (2014), R-FGSM
Tramèr et al. (2018), and a 20-step l∞-bounded PGD attack
with step-size 2 (Madry et al., 2018)). We also report the
performance of per-instance adversarially trained models

Table 5: White-box performance of hardened WideResnet
models trained on CIFAR-10. We use different attacks to
evaluate their robustness. Note that Madry’s PGD training
is significantly slower than the other training methods.

Attack method
UnivPert FGSM R-FGSM PGD

(Robust)
models
trained
with

Natural 9.2% 13.3% 7.3% 0.0%
FGSM 51.0% 95.2% 90.2% 0.0%

R-FGSM 57.0% 97.5% 96.1% 0.0%
PGD 86.1% 56.2% 67.2% 45.8%
Ours 91.8% 37.3% 48.6% 17.2%

which are trained with per-instance attacks such as FGSM,
R-FGSM and PGD Madry et al. (2018). We use our origi-
nal universal adversarial training algorithm to build a robust
WideResnet (Zagoruyko and Komodakis, 2016) on CIFAR-
10 (Krizhevsky and Hinton, 2009). The PGD per-instance
adversarial training is done by training on adversarial exam-
ples that are built using 7 steps of PGD following Madry et
al. (2018), which makes it 4× slower than the non-iterative
adversarial training methods such as our universal adversar-
ial training, FGSM, and R-FGSM adversarial training.

We summarize the CIFAR-10 results in table 5. The natu-
ral model, is vulnerable to universal and per-instance per-
turbations. Our robust model achieves best classification
(i.elet@tokeneonedothighest robustness) accuracy against
universal perturbation attacks. The 20-step PGD attack fools
the natural, FGSM robust, and R-FGSM robust models al-
most every time. Interestingly, our model is relatively resis-
tant to the PGD attack, though not as robust as the PGD-
based robust model. This result is particularly interesting
when we consider that our method is hardened using uni-
versal perturbations. While the computational cost of our
method is similar to that of non-iterative per-instance adver-
sarial training methods (FGSM, and RFGSM), our model
is considerably more robust against the PGD attack that is
known to be the strongest per-instance attack.

Transferability and black-box robustness
We study the transferability of our robust model in the black-
box threat setting, in which we generate adversarial ex-
amples based on a source model and use them to attack
a target model. We study the transferability of the adver-
sarial 20-step PGD per-instance examples between various
models with the WideResnet architecture that are trained
on CIFAR-10: natural trained model, FGSM trained robust
model, R-FGSM trained robust model, PGD trained robust
model (Madry et al., 2018), and our robust model.

The results are summarized in table 6. By examining rows
of table 6, both the PGD-based robust model and our robust
model are fairly hardened to black-box attacks made for var-
ious source models. By examining columns of table 6, we
can compare the transferability of the attacks made for var-
ious source models. In this metric, the attacks built for our
robust model are the strongest in terms of transferability and
can deteriorate the performance of both natural and other ro-
bust models. An adversary can enhance her black-box attack



(a) InceptionV1 batchsize=64 (b) InceptionV1 batchsize=64 (c) VGG16 batch-size=64

(d) VGG16 batch-size=128 (e) InceptionV3 batch-size=128 (f) ResNet-V1 152 batch-size=128

Figure 11: Universal perturbations generated using our algorithm 2 for different network architectures on ImageNet. Visually,
these perturbations which are for naturally trained models are structured.
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Figure 12: Visualization of the original/natural image and the per-instance adversarial examples generated for the naturally
trained and our universally robust model trained with the original version. The examples are the last 10 images of the CIFAR-
10 validation set. The adversarial examples have ε = 30 and are generated using an l∞ 50-step PGD attack with step-size 2.
The classifiers’ predictions on the examples are printed underneath the images. The large-ε adversarial examples generated for
our universal robust model seem to often produce salient characteristics of the targeted class. The predictions of our robust
model on the adversarial examples align well with human perception.



Table 6: Black-box attack and defense on CIFAR-10. The
adversarial examples are generated by PGD. The numbers
reported are accuracies.

Attack source
Nat. FGSM RFGSM PGD Ours

Natural - 34.1% 64.9% 77.4% 22.0%
FGSM 53.9% - 14.1% 69.6% 22.7%

RFGSM 71.5% 16.0% - 71.7% 20.3%
PGD 84.1% 86.3% 86.3% - 76.3%
Ours 90.0% 90.8% 91.0% 70.4% -

Average 74.9% 56.8% 64.1% 72.3% 35.4%

by first making her source model universally robust!
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