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Algorithmic matches in fielded kidney exchanges do not typically result in an actual transplant. We address

the problem of cycles and chains in proposed matches failing after the matching algorithm has committed

to them. We show that failure-aware kidney exchange can significantly increase the expected number of lives

saved (i) in theory, on random graph models; (ii) on real data from kidney exchange match runs between

2010 and 2014; (iii) on synthetic data generated via a model of dynamic kidney exchange. This gain is robust

to uncertainty over the true underlying failure rate. We design a branch-and-price-based optimal clearing

algorithm specifically for the probabilistic exchange clearing problem and show that this new solver scales

well on large simulated data, unlike prior clearing algorithms. Finally, we show that failure-aware matching

can increase overall system efficiency and simultaneously increase the expected number of transplants to

highly-sensitized patients, in both static and dynamic models.

Key words : kidney exchange, stochastic matching, stochastic set packing, maximum expected weighted

cycle cover, random graphs

1. Introduction

Kidney exchange is a recent innovation that allows patients who suffer from terminal kidney failure,

and have been fortunate enough to find a willing but incompatible kidney donor, to swap donors.

Indeed, it may be the case that two donor-patient pairs are incompatible, but the first donor is

compatible with the second patient, and the second donor is compatible with the first patient; in

this case a life-saving match is possible. As we discuss below, sequences of swaps can even take the

form of long cycles or chains.

The need for successful kidney exchanges is acute because demand for kidneys is far greater than

supply. Although receiving a deceased-donor kidney is a possibility, in 2014 36,158 people joined
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the national waiting list while only 16,893 left it due to receiving a kidney. With a median waiting

time ranging from 2 to 5 years depending on blood type, for some patients kidney exchange is the

only viable option.

In this paper1 we share learnings from our involvement in designing and running the kidney

exchange that was set up by the United Network for Organ Sharing (UNOS). The exchange went

live in October 2010, conducting monthly match runs. Since then, the exchange has grown to

encompass 143 transplant centers (about 61% of the transplant centers that perform living-donor

transplantation in the United States) and now conducts biweekly match runs. Based on this experi-

ence, we propose a significantly different approach as a solution to one of the main problems kidney

exchanges face today: “last-minute” failures.2 We mean failures before the transplant surgery takes

place, not failures during or after it. Amazingly, most planned matches fail to go to transplant! In

the case of the UNOS exchange, 93% of matches fail (Kidney Paired Donation Work Group 2012),

and most matches fail at other kidney exchanges as well (e.g., Ashlagi et al. 2011, Leishman et al.

2013, Bray et al. 2015). There are a myriad of reasons for these failures, as we will detail in this

paper.

To address such failures, we propose to move away from the deterministic clearing model used by

kidney exchanges today into a probabilistic model where the input includes failure probabilities on

possible planned transplants, and the output is a transplant plan with maximum expected value.

The probabilistic approach has recently also been suggested by others (e.g., Chen et al. 2012, Li

et al. 2011). They used a general-purpose integer program solver (Gurobi) to solve their optimiza-

tion models. We show that general-purpose solvers do not scale to today’s real kidney exchange

sizes. Then we develop a custom branch-and-price-based (see Barnhart et al. 1998) integer program

solver specifically for the probabilistic clearing problem, and show that it scales dramatically better.

We also present new theoretical and experimental results that show that the probabilistic approach

yields significantly better matching than the current deterministic approach. We conduct experi-

ments both in the static and dynamic setting with (to our knowledge) the most realistic instance

generators—one due to Saidman et al. (2006) and one that we created that uses real data from all

the UNOS match runs conducted so far—and simulator to date. Perhaps of greatest practical inter-

est to policymakers, we show that, even when higher edge failure rates are correlated with other

marginalizing characteristics of a vertex, failure-aware matching can simultaneously increase both

the overall number of transplants and the number of transplants to these marginalized patients—in

both the static and dynamic settings, on real and simulated data.

1.1. Related work

The idea of kidney exchange was introduced by Rapaport (1986), and ethical considerations were

discussed by Ross et al. (1997). Korea fielded the first kidney exchange program in the 1990s (Park
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et al. 1999); the first organized exchange in the US, the New England Paired Kidney Exchange

(NEPKE), began in 2003 (see Roth et al. 2004, 2005a, 2007). The topic has attracted—and

fielded exchanges have benefited from the work of—researchers from non-medical fields such as

economics (e.g., Roth et al. 2004, 2005a, 2007, Ünver 2010, Yılmaz 2011, Akbarpour et al. 2014,

Sönmez and Ünver 2014), operations research (e.g., Biró et al. 2009, Ashlagi et al. 2013, Ashlagi

and Roth 2014, Anderson 2014, Glorie et al. 2014, Manlove and O’Malley 2015, Anderson et al.

2015a), and computer science (e.g., Abraham et al. 2007, Awasthi and Sandholm 2009, Toulis and

Parkes 2015, Dickerson et al. 2012a,b, Blum et al. 2013, Anshelevich et al. 2013, Dickerson et al.

2014b, Dickerson and Sandholm 2014, Liu et al. 2014, Li et al. 2014). The market for kidneys is

constrained by the widespread view (Leider and Roth 2010) that exchanging money for organs

is “repugnant” (Roth 2007); thus, in nearly all countries including the United States, it is illegal

to buy or sell an organ, which makes deceased- and living-donor donation the only option for

procurement of a kidney.

There has been some prior work on the dynamics of kidney exchange, but that work has largely

focused on the dynamics driven by pairs and altruists arriving into, and departing from, the

exchange rather than on the dynamics driven by failures (Ünver 2010, Ashlagi et al. 2013, Akbar-

pour et al. 2014, Anderson et al. 2015a). Also the techniques developed in those prior papers are

completely different than the ones we develop here (and deal with less general models than that

which we consider).

Analysis of kidney exchange using random graph models is nowadays the typical method for

providing theoretical guidance. Indeed, some of the dynamic kidney exchange papers cited above

work in dynamic random graph models (Ünver 2010, Ashlagi et al. 2013, Akbarpour et al. 2014,

Anderson et al. 2015a). We work with the model of Ashlagi et al. (2012); related random models

include those of Ashlagi and Roth (2014) and Toulis and Parkes (2015).

The work on the query-commit problem by Molinaro and Ravi (2013) is motivated by the same

issue as our paper. They study bipartite matching (which equates to clearing with 2-cycles only

and no chains in the kidney exchange context) where edges can be tested to see whether they fail.

In the query-commit model, if an edge does not fail, it has to be matched. Under certain additional

theoretical assumptions, they prove near-optimality of their proposed testing policies. Goel and

Tripathi (2012) also study matching with 2-cycles; they provide a greedy testing algorithm for the

query-commit problem with an approximation ratio of 0.56 and show that no algorithm can obtain

a better ratio for that problem than 0.7916.

Given the ability to perform pre-match tests for the existence of up to two incident edges per

patient-donor pair (instead of the current standard of one), Blum et al. (2013) study the problem of

selecting a subset of edges such that expected cardinality of the resulting matching is maximized.



Dickerson, Procaccia, and Sandholm: Failure-Aware Kidney Exchange
4 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

They work with only unweighted 2-cycles and no chains, and provide a polynomial time algorithm

that almost surely maximizes (up to lower order terms) the expected number of swaps in that

model.

Subsequent to the initial posting of the present paper, Anderson (2014), Anderson et al.

(2015b), Blum et al. (2015), Dickerson and Sandholm (2015), Assadi et al. (2016), and Dickerson

et al. (2016) each look at match failures in a variety of models. Anderson (2014) and Anderson

et al. (2015b) first present a scalable deterministic kidney exchange algorithm that is not amenable

to failure-aware matching, but also study the problem through the lens of two-stage stochastic opti-

mization. Dickerson et al. (2016) build on that work and give the first compact formulation—that

is, a model that is of size polynomial in the size of the input—of kidney exchange; their model is

amenable only to failure-aware matching for constant failure rates, unlike the present work. With

similar motivation, Blum et al. (2015) and Assadi et al. (2016) continue the work of Blum et al.

(2013) and look at non-adaptive and adaptive policies for selecting edges to test before performing

a final maximum matching; however, their analysis caters to cycles only. Dickerson and Sandholm

(2015) build on techniques from the present paper and from Dickerson et al. (2012a, 2014b) to learn

using data how to match in a realistic model of dynamic kidney exchange; their framework also uses

machine learning and data to instantiate human experts’ high-level goals into a concrete objective

function for optimization. Glorie et al. (2014) present a branch-and-price solver that, under certain

assumptions, is able to solve the pricing problem for new cycles and chains in polynomial time.

They do not explicitly consider post-algorithmic match failure. Also, the assumptions required for

their polynomial-time pricing problem solution break under the addition of failure probabilities to

edges in chains, although they do hold for problems with cycles only.

2. Modeling expected utility: considering cycle and chain failure

In this section, we augment the standard model of kidney exchange to include the probability

of edge, cycle, and chain failure. We formalize the expected utility of an edge, cycle, and chain,

which represents the expected number of actual transplants (not just potential transplants). This

is used to define the expected utility of an overall matching, which more accurately reflects its

value relative to other matchings.

2.1. The basic graph model for kidney exchange

The standard model for kidney exchange encodes an n-patient kidney exchange—and almost any

n-participant barter exchange—as a directed compatibility graph G(n) by constructing one vertex

for each patient-donor pair. An edge e from vi to vj is added if the patient in vj wants, and could

potentially receive, the donor kidney (or item, in general) of vi; in this case, we say the patient of
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vj is compatible with the donor from vi. A donor is willing to give her kidney if and only if the

patient in her vertex vi receives a kidney.

The weight we of an edge e represents the utility to vj of obtaining vi’s donor kidney (or item).

A cycle c in the graph G represents a possible kidney swap, with each vertex in the cycle obtaining

the kidney of the previous vertex. If c includes k patient-donor pairs, we refer to it as a k-cycle.

In kidney exchange, typically cycles of length at most some small constant L are allowed—all

transplants in a cycle must be performed simultaneously so that no donor backs out after his patient

has received a kidney but before he has donated his kidney. In most fielded kidney exchanges,

including the UNOS kidney exchange, L= 3 (i.e., only 2- and 3-cycles are allowed).

Currently, fielded kidney exchanges gain great utility through the use of chains (see, e.g., Roth

et al. (2006), Montgomery et al. (2006), Rees et al. (2009), Gentry et al. (2009), Ashlagi et al.

(2011), Gentry and Segev (2011), Dickerson et al. (2012b), Ashlagi et al. (2012)). Chains start with

an altruistic donor donating his kidney to a candidate, whose paired donor donates her kidney

to another candidate, and so on. Chains can be (and typically are) longer than cycles in practice

because it is not necessary to carry out all the transplants in a chain simultaneously. Of course, there

is a chance that a bridge donor backs out of his/her commitment to donate. In that unfortunate

event, which has happened a couple of times in the US, the chain does not continue. Cycles cannot

be executed piecemeal because if someone backs out of a cycle, then some pair has lost a kidney

(i.e., their “bargaining chip”). In contrast, if someone backs out of a chain, no pair has lost their

bargaining chip (although of course it is a shame if some chain does not continue forever).

A matching M is a collection of disjoint cycles and chains in the graph G. The cycles and chains

must be disjoint because no donor can give more than one of her kidneys.

2.2. Including failure probability in the model

In the basic kidney exchange model, the weight wc of a cycle or chain c is the sum of its edge

weights, and the weight of a matching M is the sum of the weights of the cycles and chains in the

matching. The clearing problem is then to find a maximum (weighted) matching M . In reality, not

all of the recommended matches proceed to transplantation, due to varying levels of sensitization

between candidates and donors in the pool (represented by a scalar factor called CPRA), illness,

uncertainty in medical knowledge, or logistical problems. As such, the weight of a cycle or chain

as the sum of its constituent parts does not fully characterize its true worth.

Associate with each edge e= (vi, vj) in the graph G a value qe ∈ [0,1] representing the probability

that, if algorithmically matched, the patient of vj would successfully receive a kidney from vi’s

donor. We will refer to qe as the success probability of the edge, and 1− qe as the failure probability

of the edge. Using this notion of failure probability, we can define the expected (failure-aware)

utility of chains and cycles.
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2.2.1. Expected utility of a cycle For any transplant in a k-cycle to execute, each of the

k transplants in that cycle must execute. Put another way, if even one algorithmically matched

transplant fails, the entire cycle fails. Thus, for a k-cycle c, define the expected utility u(c) of that

cycle to be:

u(c) =

[∑
e∈c

we

]
·
[∏
e∈c

qe

]
That is, the utility of a cycle is the product of the sum of its constituent weights and the probability

of the cycle executing. The simplicity of this calculation is driven by the required atomicity of cycle

execution—a property that is not present when considering chains.

2.2.2. Expected utility of a chain While cycles must execute entirely or not at all, chains

can execute incrementally. For example, a 3-chain c = (a, v1, v2, v3) starting at altruist a might

result in one of four numbers of transplants:

• No transplants, if the edge (a, v1) fails

• A single transplant, if (a, v1) succeeds but (v1, v2) fails

• Two transplants, (a, v1) and (v1, v2) succeed but (v2, v3) fails

• Three transplants, if all edges in the chain represent successful transplants. (In this case, the

donor at v3 typically donates to the deceased donor waiting list, or stays in the pool as a bridge

donor. Whether or not this additional transplant is included in the optimization process is decided

by each individual kidney exchange program.)

In general, for a k-chain c= (v0, v1, . . . , vk), where v0 is an altruist, there are k possible matches

(and the final match to, e.g., a deceased donor waiting list candidate). Let qi be the probability

of edge ei = (vi, vi + 1) leading to a successful transplant. Here, we assume we = 1 for ease of

exposition; in Section 5, we show that relaxing this assumption does not complicate matters.

Then, the expected utility u(c) of the k-chain c is:

u(c) =

[
k−1∑
i=1

(1− qi)i
i−1∏
j=0

qj

]
+

[
k
k−1∏
i=0

qi

]
The first portion above calculates the sum of expected utilities for the chain executing exactly

i = {1, . . . , k − 1} steps and then failing on the (i + 1)th step. The second portion is the utility

gained if the chain executes completely.

2.2.3. Expected utility of a matching The value of an individual cycle or chain hinges on

the interdependencies between each specific patient and potential donor, as was formalized above.

However, two cycles or chains in the same matching M fail or succeed independently. Thus, define

the expected utility of a matching M to be:

u(M) =
∑
c∈M

u(c)
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That is, the expected number of transplants resulting from a matching M is the sum of the

expected number of transplants from each of its constituent cycles and chains.

For a (possibly weighted) compatibility graph G = (V,E), let M represent the set of all legal

matchings induced by G. Then, given success probabilities qe,∀e ∈ E, the failure-aware clearing

problem is to find M∗ such that:

M∗ = arg max
M∈M

u(M)

The distinction between M∗ and any maximum (non-failure-aware) weighted matching M ′ is

important, as we show in the rest of this paper—theoretically in Section 3, on real data from the

fielded UNOS kidney exchange in Section 4, and on simulated data in Section 7.

3. Maximum cardinality matching is far from maximizing the
expected number of transplants

In this section, we prove a result regarding the (in)efficacy of maximum cardinality matching in

kidney exchange, when the probability of a match failure is taken into account. We show that

in pools containing equally sensitized patient-donor pairs (and not necessarily equally sensitized

altruistic donors), with high probability there exists a “failure-aware” matching that has linearly

higher expected utility than all maximum cardinality matchings. This theoretical result motivates

the rest of the paper; since current fielded kidney exchanges perform maximum cardinality or

maximum weighted matching, many potential transplants may be left on the table as a consequence

of not considering match failures.

3.1. Random graph model of sensitization

We work with (a special case of) the model of Ashlagi et al. (2012) (§4.2), which is an adaptation

of the standard theoretical kidney exchange model to pools with highly and non-highly sensitized

patient-donor pairs.

The model works with random compatibility graphs with n + t(n) vertices, pertaining to n

incompatible patient-donor pairs (denoted by the set P ), and t(n) altruistic donors (denoted by

the set A) respectively. Edges between vertices represent not just blood-type compatibility, but

also immunological compatibility—the sensitization of the patient. Given a blood type-compatible

donor, let p denote the probability that an edge exists between a patient and that donor.

Given uniform sensitization p for each of the n patients in the pool, random graphs from this

model are equivalent to those of Erdős and Rényi (1960) with parameters n and p. In Section 3.2,

we use techniques from random graph analysis to prove that maximum cardinality matching in

highly sensitized pools (with altruists) does not optimize for expected number of actual transplants.
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(c) The matching M ′Y .

Figure 1 Illustration of a Y-gadget with k= 5. The vertices of A are white and the vertices of P are gray.

Clearly |MY |> |M ′Y |, but (using Equation 1) uq(M ′Y )−uq(MY )> q2− 6q4; this difference is positive for q < 0.41,

which is a realistic value.

3.2. Maximum cardinality matching in highly sensitized pools

Let G(n, t(n), p) be a random graph with n patient-donor pairs, t(n) altruistic donors, and prob-

ability p= Θ(1/n) of incoming edges. Such a p represents highly-sensitized patients. Let q be the

probability of transplant success that we introduced, such that q is constant for each edge e. Note

that for a chain of length k, the probability that t < k matches execute is qt(1− q), and the prob-

ability that k matches execute is qk. There is no chain cap (although we could impose one, which

depends on q). Given a matching M , let uq(M) be its expected utility in our model, i.e., expected

number of successful transplants. Denote the set of altruistic donors by A, and denote the vertex

pairs by P .

The proof of the following theorem builds on techniques used in the proof of Theorem 5.4 of

Ashlagi et al. (2012), but also requires several new ideas.

Theorem 1. For every constants q ∈ (0,1) and α,β > 0, given a large random graph

G(n,αn,β/n), with high probability there exists a matching M ′ such that for every maximum car-

dinality matching M ,

uq(M
′)≥ uq(M) + Ω(n).

Proof. We consider subgraphs that we call Y-gadgets, with the following structure. A Y-gadget

contains a path (u, v1, . . . , vk) such that u∈A and vi ∈ P for i= 1, . . . , k for a large enough constant

k, to be chosen later. Furthermore, there is another altruistic donor u′ ∈A with two outgoing edges,

(u′, v3) and (u′, v′) for some v′ ∈ P . Finally, the edges described above are the only edges incident

on the vertices of the Y-gadget. See Figure 1(a) for an illustration.
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We first claim that it is sufficient to demonstrate that with high probability the graph

G(n,αn,β/n) contains cn Y-gadgets, for some constant c > 0. Indeed, because each Y-gadget is

disconnected from the rest of the graph, a maximum cardinality matching M must match all the

vertices of the Y-gadget, via a k-chain and a 1-chain. Let MY be the restriction of M to the

Y-gadget (see Figure 1(b)). It holds that

uq(MY ) = (1− q)
k−1∑
i=1

iqi + kqk + q.

We next construct a matching M ′
Y for the Y-gadget, via two chains: (u, v1, v2) and (u′, v3, . . . , vk),

i.e., vertex v′ remains unmatched (see Figure 1(c)). We obtain

uq(M
′
Y ) = (1− q)

k−3∑
i=1

iqi + (k− 2)qk−2 + q(1− q) + 2q2.

Therefore,

uq(M
′
Y )−uq(MY ) = q2 + (k− 2)qk−1− (k− 1)(1− q)qk−1− kqk > q2− (k+ 1)qk−1. (1)

Clearly if k is a sufficiently large constant, q2/2> (k+ 1)qk−1, and hence the right hand side of

Equation (1) is at least q2/2, which is a constant. By applying this argument to each of the cn

Y-gadgets we obtain a matching M ′ such that uq(M
′)−uq(M)> (q2/2)cn= Ω(n).

It remains to establish the existence of Ω(n) Y-gadgets. Consider a random undirected graph

with n+αn vertices. The edge probabilities are p= 2(β/n)(1−β/n) + (β/n)2, i.e., the probability

of at least one edge existing between a pair of vertices in P . A standard result on sparse random

graphs (see, e.g., Janson et al. (2011)) states that for every graph X of constant size, with high

probability we can find Ω(n) subgraphs that are isomorphic to X and isolated from the rest of

the graph. In particular, with high probability our random graph has Ω(n) subgraphs that are

isomorphic to the undirected, unlabeled version of a Y-gadget.

There are two independent issues we need to address. First, these subgraphs are unlabeled, i.e.,

we do not know which vertices are in A, and which are in P . Second, the graph is undirected, and

may have some illegal edges between pairs of vertices in A. We presently address the first issue. We

randomly label the vertices as A or P , keeping in mind that ultimately it must hold that |P |= n

and |A|= αn. Assume without loss of generality that α≤ 1. Consider an arbitrary vertex in one

of the special subgraphs. This vertex is in P with probability 1/(1 +α), and in A with probability
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α/(1+α). The label of the second vertex depends on the first. For example, if the first is in P then

the probabilities are (1− 1/n)/(1− 1/n+α) for P and α/(1− 1/n+α) for A.

We sequentially label the vertices of min{cn, (αn)/(10k)} gadgets, where cn is the number of

Y-gadgets, taking into account the previous labels we observed. (Note that we are labeling a linear

number of Y-gadgets, since k is constant.) Because we observed far fewer than αn/2 labels, in

each trial the probability of each of the two labels, conditioned on the previous labels, is at least

(α/2)/(1+α/2), which is a constant. This lower bound allows us to treat the labels as independent

Bernoulli trials. Thus, the probability that a gadget has exactly the right labels (two A labels in

the correct places, and P labels everywhere else) is at least r = ((α/2)/(1 + α/2))k+3, which is a

constant. The expected number of correctly labeled gadgets is therefore at least r ·min
{
cn, αn

10k

}
,

i.e., Ω(n). Using Chernoff’s inequality, with high probability we can find Ω(n) correctly labeled

gadgets.

We next address the second issue, that is, the directions of the edges. For each of the Ω(n)

correctly labeled gadgets, each undirected edge corresponds to a directed edge in one of the two

direction with probability
β
n

(
1− β

n

)
2β
n

(
1− β

n

)
+
(
β
n

)2 ≈
1

2
,

and corresponds to edges in both directions with the complement (small) probability. The proba-

bility that each edge in a Y-gadget corresponds to a single edge in the correct direction is therefore

constant, and using similar arguments as above, with high probability a constant fraction of the

correctly labeled gadgets will have correctly oriented edges.

Finally, note that the labels of the vertices and the directions of the edges in each of the initially

unlabeled, undirected Y-gadgets are independently assigned. Given one of these initial (linearly

many) Y-gadgets, we have shown that the probability of that Y-gadget being labeled correctly is a

constant. Similarly, we have shown that the probability of that Y-gadget having all edges in exactly

the right orientations is a constant. Thus, since these events are independent, the probability

that both events occur is a constant, and we have a constant fraction of the linearly many initial

Y-gadgets with the correct orientation of edges and labels of nodes.

A final issue that remains to address is that there are no edges between pairs of vertices in A,

and the probability of edges (u, v) where u ∈ A and v ∈ P is smaller than p. We first note that,

since we are looking at a denser graph, isolation is harder to achieve. Moreover, since a Y-gadget

has no adjacent vertices in A, we discard any such Y-gadgets, so the increased probability of edges

between such pairs does not help us. Finally, for pairs (u, v) where u∈A and v ∈ P , the probability

of an edge (u, v) existing is equal to the probability of an edge existing in the undirected graph
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and the edge being in the right direction; Y-gadgets where the edge is in the wrong direction are

discarded. �

Importantly, while the proof of Theorem 1 only explicitly discusses chains (in the construction

of the Y-gadgets), the optimal matching also contains cycles—they are just not the driving force

behind this result. In the next section, we provide experimental validation of this theoretical result

using real data from the UNOS nationwide kidney exchange, which we help run.

4. Experiences from, and experiments on, the UNOS kidney exchange

Over the past decade, fielded kidney exchanges have begun appearing in the United States. One of

the largest, run by the United Network for Organ Sharing (UNOS), performed its first match run

in October of 2010. As of July 2015, it matches on a biweekly basis, and interacts nationwide with

143 transplant centers. We maintain the optimization code for match runs in the UNOS kidney

exchange program, and interact frequently with the medical, logistical, and support staff for the

program. In this section, we present experimental results comparing failure-aware and deterministic

matching on real data from this exchange, using multiple estimated distributions over edge failure

probabilities. We also perform a sensitivity analysis on the gains realized by the algorithm when

there is uncertainty over the true underlying failure probabilities, as is the case in reality.

4.1. Estimating edge failure probabilities

The UNOS US-wide kidney exchange computes a maximum weighted matching at each clearing.

The function used to assign weights to edges was determined by a committee of medical profession-

als, and takes into account such factors as donor and patient location, health, and CPRA score.

We have access to this data, and use it in our experiments.

However, medical knowledge is incomplete; as such, we cannot determine the exact probability

q that a potential transplant will succeed. For our experiments, we use multiple distributions of

edge failure probabilities.

First, we draw from all the data from the match runs conducted in the UNOS exchange to date.

Figure 2 displays success and failure results for recommended matches from the UNOS kidney

exchange for matches between October 27, 2010 and November 12, 2012.3 Approximately 7% of

matches resulted in a transplant, while approximately 93% failed. Of the 93% that failed:

• 49% were not the reason for failure. The cycle or chain in which the potential transplant was

involved failed entirely (in the case of cycles) or before the patient’s turn (in the case of chains).

• 44% were the reason for failure.

— 36% of these (about 16% of the total) failed due to a positive crossmatch, signifying blood-

type incompatibility (beyond the ABO model).

— 64% failed due to a variety of other reasons, as discussed below.
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Successful Transplant
(7%, Negative CM)

Failed Transplant
(93%)

Failed: Not reason for failure
(49%, Unknown CM)

Failed: Reason for failure
(44%)

Failed: Tissue type mismatch
(16%, Positive CM)

Failed: Other
(28%, Unknown CM)

Figure 2 Determining the probability of a match failing is difficult because many potential patient-donor pairs

are not crossmatched. Of the aggregate UNOS data, we are only sure that the 7% who successfully received a

transplant and the 16% who explicitly failed due to a positive crossmatch were tested.

Triggering a cycle or chain failure can occur for a variety of reasons, including:

• Receiving a transplant from the deceased donor waiting list

• Receiving a transplant from another exchange

• Patient or donor becoming too ill for surgery or expiring

• An altruistic patient “running out of patience” and donating elsewhere, or not at all

• A donor in a chain reneging (i.e., backing out after his patient received a kidney)

• Pregnancy or sickness changing a patient or donor’s antigen incompatibilities

In these cases, a patient and potential donor may or may not have received a crossmatch test.

In fact, the only sureties regarding crossmatches to be derived from the data above are that 7%

crossmatched negative (those who received transplants) and 16% crossmatched positive. Thus,

roughly 7/(16 + 7) ≈ 30% of these crossmatches came back negative. We use this value for our

first set of simulations, setting the probability of a crossmatch failing to be a constant 70%. This

70% expected failure is optimistic (i.e., too low) in that it ignores the myriad other reasons for

match failures. UNOS currently performs batch myopic matches, so—for these simulations—we

only simulated crossmatch failures. We take additional failure reasons into account in Sections 7

and 8.

Second, in the UNOS exchange and in others (see., e.g., Ashlagi et al. (2012)), patients tend to

have either very high or very low sensitization, i.e., there is a very low or very high probability that

their blood will pass a crossmatch test with a random organ. For highly-sensitized patients, finding

a kidney is very difficult. Drawing from this and the 70% failure rate derived above, our second

set of experiments samples randomly from a bimodal distribution: 25% of edges have a low failure

rate (1− qL) ∈ U [0.0,0.2], while 75% have a high failure rate (1− qH) ∈ U [0.8,1.0], such that the
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overall expected failure rate is 70%. Third, we systematically vary the variance of the underlying

failure probability distribution and explore its effect on the behavior of both matching methods.

4.2. UNOS results: Failure-aware matching is better in practice

We now simulate probabilistic matching on real data from UNOS, using that exchange’s cycle

length cap of 3. We performed simulations using both the constant 70% failure rate and the bimodal

failure rate. On the former, we can compute an exact expected value for the failure-aware matching

on each real UNOS matching. On the latter, we simulated failure probabilities at least 100 times

for each UNOS match run.

0 20 40 60 80 100 120 140 160

UNOS Match Run
0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
xp

ec
te

d
Tr

an
sp

la
nt

s

All UNOS match runs (constant)
Probabilistic
Current

Figure 3 Comparison of the expected number of transplants resulting from the maximum weighted matching

and failure-aware weighted matching methods, on 161 UNOS match runs between October 2010 and November

2014, with a constant edge success probability.

Figures 3 and 4 show that, in both cases, taking failure probabilities into account results in

significantly more expected transplants.In the constant probability case, failure-aware matching

yields many more matches than (or in some cases the same number as) the status quo of maximum

weighted matching. (In cases where the expected utility of both matching methods was equal,

the matchings with equivalent compositions (i.e., same number of 2-cycles, 3-cycles, and k-chains)

were returned by both solvers.) The failure-aware matching performed better when the maximum

weighted matching included long chains, a frequent phenomenon in the UNOS pool (and other

fielded exchange pools in the US and abroad), as discussed by Dickerson et al. (2012b), Ashlagi

et al. (2012), and Glorie et al. (2014).
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Figure 4 Comparison of the expected number of transplants resulting from the maximum weighted matching

and failure-aware weighted matching methods, on 161 UNOS match runs between October 2010 and November

2014, with bimodal edge success probabilities (some very high, some very low).

In the bimodal case, failure-aware matching shines, often beating the maximum cardinality

matching by a factor between 2 and 5, and again never doing worse in expectation. Here, the

failure-aware matching algorithm is able to pick cycles and chains that contain edges with very

high probabilities of success over those with very low probabilities of success.

Table 1 gives aggregate match data for both the current UNOS solver and our proposed method

on both the constant and bimodal underlying failure rate probability distributions. Across all UNOS

match runs using a constant edge failure probability of 0.7, the failure-aware method results in an

expected 0.15 more transplants per match run over the maximum weighted matching solver. Using

the bimodal distribution, the failure-aware method returns an expected additional 1.38 transplants

per match run. Table 1 gives the results of both a paired t-test and a Wilcoxon signed-rank test

(a non-parameteric version of the t-test); we ran both on the expected number of transplants from

the 161 paired deterministic and failure-aware optimal matchings for each of the UNOS match

runs to test if their population means were different. Clearly, the gains seen under both failure

distributions are statistically significant.

4.3. Distributional diversity begets greater gains

Section 4.2 showed experimentally that (i) a statistically significant gain in expected matches

occurs under the consideration of match failure and (ii) a bimodal underlying failure probability

distribution resulted in more of a gain than a constant underlying failure probability distribution.

We delve deeper into this insight in this section.
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Current Ours t-test Wilcoxon Signed-rank
Distribution Average St. Dev. Average St. Dev t-statistic p-value Siegel’s T p-value

Constant 0.52 0.43 0.67 0.50 10.95 < 10−10 0 < 10−10

Bimodal 0.51 0.43 1.89 1.79 11.85 < 10−10 0 < 10−10

Table 1 Distributional difference between maximum weighted matching and failure-aware matching on real

UNOS data.
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Figure 5 Aggregate additional transplants over all UNOS match runs through November 2013, for edge failure

probabilities drawn randomly from N (µ= 0.7, σ ∈ {0.1,0.2}). The leftmost point “σ= 0.0” represents a constant

failure rate of 70%.

We now investigate the effect that higher variance in edge failure probabilities has on the overall

value of both matching methods. For this section’s experiments, we sample from a normal dis-

tribution with mean of 0.7 and varying standard deviation. If a sample returns an illegal failure

probability p (i.e., p < 0 or p > 1), we resample from the underlying distribution. In this way, we

expand the underlying distribution from a constant 0.7 toward a more uniform randomness.

Figure 5 shows the aggregate number of expected transplants (summed over all UNOS match

runs through November 2013) for varying levels of variance σ2, given a standard deviation of σ, in

the underlying distribution from which failure probabilities are sampled. For convenience, we label

the constant probability of 0.7 case as “σ= 0.0”. Positive crossmatches are simulated based on an

edge’s sampled probability of failure.

In the constant probability case, failure-aware matching results in an average expected 18.4%

increase in expected transplants. As the standard deviation of the underlying distribution increases,

so too does this expected boost: from 18.8% to 28.5% respectively, for σ = 0.10 and σ = 0.20,

respectively. An increase in variance also results in the maximum cardinality matching method

frequently missing the highest utility match by a large margin. For instance, the 80th and 95th
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percentiles increase from an additional 59.8% and 154.2% in the constant probability case to

94.6% and 462.9% when σ= 0.20. Higher variance results in more opportunities for the maximum

cardinality matching to contain many matches with an extremely low probability of execution (e.g.,

a 3-cycle with edges that are likely to fail instead of a smaller 2-cycle with more reliable edges).

4.4. Robustness to uncertainty over true edge failure probabilities

The previous sections assumed that the true underlying failure rate for each edge was known with

certainty; that is, if the optimizer uses a failure rate of 0.41 for an edge e, then in reality that edge

fails with probability 0.41. In reality, any available failure probabilities would be noisy estimates

of the true underlying failure probabilities. For example, Glorie (2012) estimate the probability of

a positive crossmatch as a function of a patient’s CPRA, and fit a probit model to predict the

crossmatch result. They are able to find a noisy estimate of the underlying failure rate. Using this

motivation—that, in reality, it is possible to find a reasonable but imperfect estimate of the true

underlying failure rate—we now perform a sensitivity analysis to test our method’s robustness to

uncertainty over the underlying true edge failure rate.

In the following experiments, we vary two failure rates f, f ′ ∈ {0.0,0.1, . . . ,0.9}. We use f to

refer to the true (unknown) underlying failure rate for an edge; similarly, we use f ′ to refer to the

estimated failure rate that is given to the optimizer. For example, if f ′ = 0.41 but f = 0.2, then

the optimizer uses the failure rate 0.41 to produce a failure-aware matching, but each edge will

fail (i.i.d.) in reality with probability 0.2. We then measure the number of realized transplants (so,

transplants that were achieved after the true failure rate f is applied) and compare against one of

two baselines. Experiments are performed on the real UNOS match runs as follows. For each match

run, for each true failure rate f , for each edge, simulate if that edge exists or does not exist. Then,

for each failure rate f ′, run the failure-aware matching algorithm using f ′. Receive credit only for

those cycles and portions of chains that exist given the pre-determined failures in accordance with

true rate f . This is done 50 times per match run, true rate f , and estimated rate f ′.

Table 2 compares the performance of failure-aware matching using f ′ to that of failure-aware

matching using f ′ = f . For example, using a failure rate of f ′ = 0.6 when the true underlying

failure rate is f = 0.3 results in an expected 0.07 fewer transplants realized than using f ′ = f = 0.3.

Intuitively, losses increase as the distance between f and f ′ increases. Experimentally, there is

a large jump in loss when using a failure rate of f ′ ≥ 0.4 if f < 0.4, and when using f ′ < 0.4 if

f ≥ 0.4. This can be explained analytically as follows. Given a failure probability f , consider the

expected utilities of a 2-cycle c2 and a 3-cycle c3: u(c2) = 2(1− f)2 and u(c3) = 3(1− f)3. When

f < 1
3
, u(c2) < u(c3), so the optimizer favors 3-cycles over 2-cyles. When f > 1

3
, u(c2) > u(c3),

so the optimizer favors 2-cycles. So, when f and f ′ are on different sides of this 1
3

boundary,
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True rate f
Estimated failure rate f ′

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 – 0.00 0.00 0.00 −1.14 −1.14 −1.15 −1.15 −1.15 −1.15
0.1 0.00 – 0.01 0.01 −0.62 −0.63 −0.63 −0.63 −0.63 −0.63
0.2 −0.03 0.00 – 0.00 −0.31 −0.30 −0.30 −0.31 −0.30 −0.30
0.3 −0.02 0.01 0.01 – −0.07 −0.07 −0.07 −0.08 −0.07 −0.07
0.4 −0.12 −0.08 −0.07 −0.08 – 0.00 0.00 0.00 0.00 0.00
0.5 −0.17 −0.14 −0.13 −0.14 0.00 – 0.00 0.00 0.00 0.00
0.6 −0.16 −0.14 −0.14 −0.14 0.00 0.00 – 0.00 0.00 0.00
0.7 −0.14 −0.13 −0.13 −0.13 0.00 0.00 0.00 – 0.00 0.00
0.8 −0.09 −0.07 −0.07 −0.07 0.00 0.00 0.00 0.00 – 0.00
0.9 −0.02 −0.02 −0.02 −0.02 0.00 0.00 0.00 0.00 0.00 –

Table 2 Expected gain in number of realized transplants when optimizing using a constant failure rate of f ′,

given a true underlying failure rate of f , compared to failure-aware matching using the true failure rate.

True rate f
Estimated failure rate f ′

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 – 0.00 0.00 0.00 −1.14 −1.14 −1.15 −1.15 −1.15 −1.15
0.1 – 0.00 0.00 0.01 −0.62 −0.63 −0.63 −0.63 −0.63 −0.63
0.2 – 0.03 0.03 0.02 −0.28 −0.27 −0.28 −0.28 −0.28 −0.28
0.3 – 0.04 0.03 0.02 −0.05 −0.05 −0.05 −0.06 −0.05 −0.05
0.4 – 0.04 0.04 0.03 0.12 0.11 0.11 0.11 0.12 0.11
0.5 – 0.03 0.03 0.03 0.16 0.17 0.16 0.17 0.17 0.16
0.6 – 0.02 0.02 0.02 0.16 0.16 0.16 0.16 0.16 0.16
0.7 – 0.01 0.01 0.01 0.14 0.14 0.14 0.14 0.14 0.14
0.8 – 0.01 0.01 0.01 0.08 0.08 0.09 0.09 0.09 0.09
0.9 – 0.00 0.01 0.00 0.02 0.02 0.02 0.02 0.02 0.02

Table 3 Expected gain in number of realized transplants when optimizing using a constant failure rate of f ′,

given a true underlying failure rate of f , compared to the deterministic status quo.

the optimizer will either be incorrectly optimistic—resulting in the use of too-risky 3-cycles—or

incorrectly pessimistic—resulting in the avoidance of more valuable 3-cycles.

Table 3 uses a different underlying baseline, and compares failure-aware matching using f ′ to

the status quo deterministic matching (which is equivalent to failure-aware matching using f ′ = 0).

Here, we see the 1
3

boundary expressed even more clearly. When the true underlying failure rate f is

above that boundary, then failure-aware matching with any failure rate outperforms deterministic

matching. When both the estimated f ′ and true f are below the boundary, failure-aware matching

outperforms deterministic matching. But, when f is below and f ′ is above the boundary, the failure-

aware matching algorithm is too pessimistic and avoids 3-cycles that, in expectation, are worth

using. We note that, in practice, f ≈ 0.7� 1
3
; thus, these results support the failure-aware matching

method dramatically outperforming the deterministic status quo under even large differences in

estimated failure rate f ′ and true failure rate f .

Next, in Section 5, we construct a solver that is capable of optimally clearing large exchanges—

larger, even, than those currently available at UNOS or other fielded kidney exchanges.
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5. Building a scalable solver to clear failure-aware exchanges

Current kidney exchange pools are small, containing at most a few hundred patients at a time. For

example, so far the UNOS match runs never had pools larger than 258 patients and 277 donors.

However, as kidney exchange gains traction, these pools will grow. As discussed by Abraham et al.

(2007), the estimated steady-state size of a US nationwide kidney exchange is 10,000 patients.

Clearing pools of this size is a computational challenge. Abraham et al. (2007) showed that the

deterministic clearing problem is NP-hard. Since the deterministic clearing problem is a special case

of the failure-aware clearing problem—that is, it is the failure-aware clearing problem with constant

success probability q= 1.0—it follows that the failure-aware clearing problem is also NP-hard.

Proposition 1. The failure-aware clearing problem is NP-hard.

To our knowledge, there is no solver that would scale to the nationwide steady-state size—

including the CMU solver used by UNOS. This solver is based on the work of Abraham et al.

(2007), with enhancements and generalizations by Dickerson and Sandholm, and uses integer linear

programming (IP) with one decision variable xc for each cycle c no longer than L (in practice,

L= 3), and constraints that state that accepted cycles are vertex disjoint. For expository ease in

the coming sections, Equation 2 presents that IP model, written in the context of C(L), the set of

all cycles of length at most L.

max
∑

c∈C(L)

u(c) xc s.t .
∑
c:v∈c

xc ≤ 1 ∀v ∈ V (2)

With specialized branch-and-price IP solving techniques, Abraham et al. (2007) were able to

solve the (3-cycle, no chains, deterministic) problem at the projected steady-state nationwide scale

of 10,000 patients.

In the current UNOS solver, chains are incorporated by adding from the end of each potential

chain a “dummy” edge of weight 0 to every vertex that represents an altruist. Chains are generated

in the same fashion as cycles, and look identical to cycles to the optimization algorithm—with one

caveat. Recall that chains need not be executed atomically, and thus, in practice, the cycle cap

of 3 is not applicable to chains. Due to the removal of this length restriction, this approach does

not scale even remotely to the nationwide level—failing in exchanges of sizes as low as 200 in the

deterministic case (as shown by Dickerson et al. (2012b)).

In this section, we augment the current UNOS solver to solve the failure-aware clearing problem

on exchanges with edge failure probabilities. We first show that a powerful tool used in the current

solver—the technique used to upper bound the objective value—is no longer useful. We show how

to adapt the current solver’s lower bounding technique to our model. We then significantly improve
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the core of the solver, which performs column generation, to only consider cycles and chains that

are useful to the optimal failure-aware matching, and provide failure-aware heuristics for speeding

up the column generation process.

5.1. Why we cannot use the current UNOS solver

In integer programming, a tree search that branches on each integral decision variable is used to

search for an optimal solution. At each node, upper and lower bounds are computed to help prune

subtrees and speed up the overall search. In practice, these bounding techniques are critical to

proving optimality without exhaustively searching the space of all assignments.

5.1.1. Computing a good upper bound is hard The current kidney exchange solver uses

the cycle cover problem with no length cap as a heuristic upper bound. This unrestricted clearing

problem is solvable in polynomial time by encoding the pool into a weighted bipartite graph and

computing the maximum weighted perfect matching (see reduction by Abraham et al. (2007)).

This is useful in practice because the unrestricted bound often matches the restricted (e.g., |L| ≤ 3)

optimal objective value. Unfortunately, for the failure-aware version of this problem, Proposition 2

shows that computing this bound is NP-hard.

Proposition 2. The unrestricted failure-aware maximum cycle cover problem is NP-hard.

Proof sketch. We build on the proof of Theorem 1 from Abraham et al. (2007), which shows

that deciding if G admits a perfect cycle cover containing cycles of length at most 3 is NP-complete.

They reduce from 3D-Matching. All the cycles in the constructed widgets in their proof are of

length at least 3. Due to edge failures, a perfect cover which uses only 3-cycles has higher utility

than any other cover, since each edge in a 3-cycle is worth more than a vertex in a k-cycle for

k > 3 due to the all-or-nothing execution of cycles in a world with edge failure. The reduction

of Abraham et al. (2007) has the property that there is a perfect cover with only 3-cycles if and

only if there is a 3D-Matching. Determining this is NP-complete, and thus the search problem is

NP-hard. �

Driven by this hardness result, our new solver can use one of two looser upper bounds, solving

the unrestricted clearing problem on a graph G′ = (V,E′) with different edge weights or failure

probabilities. In the (standard) setting where chains are executed partially until their first edge

failure, the solver sets q′e = 1, for each e∈E—that is, it solves the deterministic unrestricted clearing

problem. For policies that allow chains to execute if and only if all edges in the chain exist, we set

w′e =weqe, then q′e = 1, for each e∈E, and solve the unrestricted clearing problem on that graph.
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5.1.2. Computing a good lower bound is not hard The current UNOS solver uses the

2-cycle maximum matching problem (which is equivalent to the deterministic clearing problem

for L= 2) as a primal heuristic, or lower bound. The new solver uses the failure-aware version of

the 2-cycle maximum matching problem as a primal heuristic during the branch-and-price search.

Solving this problem is still in polynomial time, as stated in Proposition 3.

Proposition 3. The failure-aware clearing problem with cycle cap L= 2 is solvable in polyno-

mial time.

Proof. Given a directed compatibility graph G = (V,E), construct an undirected graph G′ =

(V,E′) such that an edge exists between two vertices in G′ if and only if there exists a two-cycle

between those vertices in G. Then, set the weight of every edge e′ = (vi, vj) in G′ to:

we′ = q(vi,vj) · q(vj ,vi)(w(vi,vj) +w(vj ,vi))

Now find the maximum weighted matching on G′, which can be done in polynomial time by

Edmond’s maximum-matching algorithm (1965).

5.1.3. Incremental solving of very large IPs The number of decision variables in the

integer program formulation of the clearing problem grows linearly with the number of cycles and

chains in the pool. Unfortunately, the number of cycles grows polynomially in the cap L, and the

number of chains grows exponentially! In fact, on pools generated using the state of the art kidney

exchange generator due to Saidman et al. (2006), pools of size 5000 containing no chains already

contained nearly half a billion cycles. Including chains makes the full integer program impossible

to store in memory.

Toward this end, the current UNOS solver uses an incremental formulation called column gener-

ation to bring only some variables into the search tree at each node. The basic idea behind column

generation is to start with a reduced model of the problem, and then incrementally bring in vari-

ables (and their constraints) until the solution value of this reduced model is provably the solution

value of the full (implicitly represented) model. This is done by solving the pricing problem, which

associates with each variable a real-valued price such that, if any constraint in the full model for

a variable c is violated, then the price of that variable is positive. In our case, the price of a cycle

or chain c is just the difference between the expected utility u(c) and the dual value sum of the

vertices in that cycle or chain.

When no positive price cycles exist, we have proved optimality at this node in the search tree.

Proving this is hard, since the solver might have to consider each cycle and chain. We now present

a method for “cutting off” a chain after we know its expected utility is too low to improve the

reduced problem’s objective value.
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5.2. Iterative generation of only potentially “useful” chains.

Given a k-chain c = (v0, v1, . . . , vk), with v0 an altruist, we show a technique for curtailing the

generation of additions to c (while maintaining solution optimality). Consider the (k + 1)-chain

c′ = c+ {vk+1}. Then the additional utility of this chain over c is just:

u(c′)−u(c) =

(
k∑
i=1

(1− qi)i
i−1∏
j=0

qj + (k+ 1)
k∏
i=0

qi

)
−
(
k−1∑
i=1

(1− qi)i
i−1∏
j=0

qj + k
k−1∏
i=0

qi

)

= (1− qk)k
k−1∏
i=0

qi− k
k−1∏
i=0

qi + (k+ 1)
k∏
i=0

qi

= (k+ 1)
k∏
i=0

qi− qkk
k−1∏
i=0

qi = (k+ 1)
k∏
i=0

qi− k
k∏
i=0

qi =
k∏
i=0

qi

That is, the additional utility is just the probability of c′ executing perfectly from start to finish

(times the weight of the new edge, if wk 6= 1).

Now, assume we are given some maximum success (minimum failure) probability qmax of the

edges left in the remaining total pool of patients V ′ (so for G = (V,E), the remaining pool is

V ′ = V \ c). Then, an upper bound on the additional utility of extending c to an infinitely long

chain c∞ is just the geometric series:

u(c∞)−u(c)<
∞∑
j=k

k−1∏
i=0

qi

j∏
i=k

qmax =
k−1∏
i=0

qi

(
∞∑
j=k

j∏
i=k

qmax

)

Since qmax < 1, this converges to:

u(c∞)−u(c) =k→∞
qmax

1− qmax

k−1∏
i=0

qi (3)

An upper bound on the expected utility of a (possibly infinite) chain c′, extended from some base

k-chain c= (v0, v1, . . . , vk), is given in Equation (3) above. We are interested in using this computed

value to stop extending c.

Let the dual value of a vertex v be dv. Furthermore, let dmin be the minimum dual value of any

vertex in V ′ = V − c. Then a lower bound on the “cost” of using this extended chain c′ is given by

dmin +
∑k

i=0 di.

By taking the optimistic upper bound on the utility of an infinite extension c′ and the lower

bound on the “cost” of using c′, a criterion for c′ not being useful is:(
qmax

1− qmax

k−1∏
i=0

qi

)
+u(c) + `−

(
dmin +

k∑
i=0

di

)
≤ 0 (4)

Here, ` is the utility derived from the final donor in a chain donating his or her kidney to the

deceased donor waitlist. This is set by each individual kidney exchange.
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Note that the sum of any finite subsequence of the infinite geometric series is less than the sum of

the infinite series. Then, the first segment of Equation 4 can be only lower for any finite extension

of c. Thus, if the inequality holds for the infinite extension, it must also hold for the finite extension.

Proposition 4. Given a k-chain c, if the infinite extension c∞ is not promising (i.e., Equation 4

holds), then no finite extension is promising, either.

We use Proposition 4 to stop generating extensions of chains during our solver’s iterative chain

(column) generation routine. We incrementally maintain the expected utility of the chain u(c) and

the sum of the dual values of vertices in that chain, and compute the infinite series’ convergence of

the infinite chain whenever an extension is considered. If Equation 4 holds, from Proposition 4, we

know no finite (or infinite) extension of c can have positive price, and the solver cuts off generating

additions to c.

5.3. Heuristics for generating positive price chains and cycles.

During the column generation process, the optimizer iteratively brings positive price cycles and

chains into a reduced linear program (LP). Once no cycles or chains outside the reduced LP have

positive price, where the price of a cycle/chain c is defined to be u(c)−∑v∈c dv, we can determine

optimality from the reduced LP for the full LP.

In practice, the order in which positive price cycles and chains are brought into the reduced

problem drives solution time. One approach is to try to generate those cycles and chains with

lowest price. In our solver, we heuristically order the edges from which we start cycle or chain

generation toward this end.

5.3.1. Ordering the cycle generation For cycles, where v is a patient-donor vertex and

v′ is the vertex in v’s outgoing neighbors with maximum failure-aware edge weight, we sort in

descending order of ν:

νv = q̄inv q(v,v′)w(v,v′)− dv
Here, q̄inv is the average success probability of all incoming edges to v. Note that, for each vertex

v, the q̄inv q(v,v′)w(v,v′) term can be computed exactly once (at cost O(|V |2)), since these values do

not change. Then, at each iteration of column generation, we perform an O(|V | log |V |) sort on the

difference between this term and the current dual values.

Proposition 5. For any non-altruist v and next step v′, such that (q(v,v′)w(v,v′) − dv)≤ 0, we

need not initiate cycle generation from v (which still guarantees all cycles are generated).

Proof. A cycle c involves at least two vertices, including v. If v has a non-positive dual-

discounted weight, then at least one other vertex v′ in the cycle must have positive dual-discounted

weight. If not, the cycle will have non-positive price and will not be considered in the column

generation. Starting a search from v′ will generate c.
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CPLEX Ours
|V | Solved Time (solved) Solved Time (solved)
10 127 / 128 0.044 128 / 128 0.027
25 125 / 128 0.045 128 / 128 0.023
50 105 / 128 0.123 128 / 128 0.046
75 91 / 128 0.180 126 / 128 0.072
100 1 / 128 1.406 121 / 128 0.075
150 0 / 128 – 114 / 128 0.078
200 0 / 128 – 113 / 128 0.135
250 0 / 128 – 94 / 128 0.090
500 0 / 128 – 107 / 128 0.264
700 0 / 128 – 115 / 128 1.071
900 0 / 128 – 38 / 128 2.789
1000 0 / 128 – 0 / 128 –

Ours without chain curtailing
Solved Time (solved)

128 / 128 0.052
128 / 128 0.049
125 / 128 0.057
123 / 128 0.066
121 / 128 0.071
95 / 128 0.098
76 / 128 0.096
48 / 128 0.133
1 / 128 0.632
0 / 128 –
0 / 128 –
0 / 128 –

Table 4 Scaling results for our method versus CPLEX, timeout of 1 hour, reported times in seconds.

5.3.2. Ordering the chain generation For chains, where a is an altruist and v is the vertex

corresponding to the initial edge from that altruist, we sort in descending order of ν:

νa,v = q(a,v)w(a,v)− da

The intuition here is that chains with a high utility outgoing edge (at low cost, from da) are

more likely to be included in the final solution than those with low initial utilities. Note that we

must consider all first hops out of all altruists, including those such that νa,v ≤ 0. Due to this,

each iteration of column generation requires an O(|A||V | log(|A||V |)) sort. With |A| small, as in

the UNOS exchange, this is an allowable cost.

6. Scalability experiments

In this section, we test the ability of our new solver on kidney exchange compatibility graphs that

are larger than current fielded kidney exchange pools, with an eye toward the future where kidney

exchanges will be larger. We use data generated by the current state of the art kidney exchange

instance generator by Saidman et al. (2006), augmented to include altruistic donors. These graphs

are significantly denser than current kidney exchange pools. For a discussion on this, see Ashlagi

et al. (2012) and Dickerson et al. (2012b). We test in the static (that is, myopic batch matching)

setting here; in the next section, we expand to dynamic matching. For the experiments in this

section, we assume a constant failure probability of 0.7 for each donor-patient edge.

We compare our novel solver against IBM ILOG CPLEX 12.2 (2010), a recent version of a state-

of-the-art integer linear programming solver. Since CPLEX does not use branch-and-price, it must

solve the full integer program (with one decision variable per possible cycle and chain).

Table 4 shows runtime and completion results for both solvers on graphs of varying size. Each

graph has |V | patient-donor pairs and 0.1|V | altruistic donors. For example, a row labeled |V |= 50
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corresponds to a graph with 50 patient-donor pairs and 5 altruists. We generated 128 such graphs

for each value of |V |. Each solver was allocated 8GB of RAM and 1 hour of solution time on

Blacklight, a large cc-NUMA shared-memory supercomputer at the Pittsburgh Supercomputing

Center. (Blacklight was used solely to parallelize multiple runs for experimental results; our solver

does not require any specialized hardware. In fact, the current version of our solver that runs the

weekly matches at UNOS runs on commodity hardware.) CPLEX was unable to solve instances of

size 100 (except once) in under an hour, while our solver was able to solve (at least some) instances

of size 900.

To test how much speed was added by each of the improvements in this paper to the current

UNOS solver, we deactivated the cycle and chain generation ordering heuristics (§5.3), as well

as the solver’s ability to cut off chain generation after the initial portion of a chain has been

proven not to be in an optimal match (§5.2). Interestingly, removing the cycle and chain ordering

heuristics did not noticeably affect the runtime or number of instances solved by our solver. Their

low impact on performance is caused by the weak upper bounding performed during the IP solve;

since the bounding is weak, often optimality must be proved by considering all (failure-discounted,

possibly “good”) chains and cycles, as opposed to being proved via bounding in the search tree. We

believe these ordering heuristics, or ones like them, will hold greater merit when better bounding

techniques are developed in the future. However, turning off the solver’s ability to reason about the

maximum additional expected utility of a chain did significantly affect overall runtime and number

of instances solved; in fact, without this technique, only a single instance with 500 patient-donor

pairs finished within the one hour time limit.

Table 4 also lists runtime results for those instances that did complete. When a solver was able

to solve an instance within an hour, the solution time was typically quite low. This is a function

of the upper and lower bounds becoming tight early on in the search tree. Overall, our method of

incrementally generating cycles and chains results in dramatically increased completion percentages

and lower runtimes than CPLEX.

7. A model for experimental dynamic kidney exchange

In this section, we explore failure-aware matching in the context of dynamic kidney exchange.

Kidney exchange is a naturally dynamic event, with patients, paired donors, and altruists arriving

and departing the pool over time. Section 4 enumerated some of the reasons we have seen in our

experiences with the UNOS nationwide exchange. Formally, a dynamic kidney exchange can be

explained by the evolution of its graph—that is, the addition and removal of its vertices and edges.

Table 5 formalizes the evolution of a compatibility graph over time. The only vertex and edge

additions to the graph come in the form of new patients and donors arriving over time. Edges are
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Vertex – Edge – Vertex/Edge +
Transplant, this exchange Matched, positive crossmatch Normal entrance
Transplant, deceased donor waitlist Matched, candidate refuses donor
Transplant, other exchange (“sniped”) Matched, donor refuses candidate
Death or illness Pregnancy, sickness changes HLA∗

Altruist runs out of patience
Bridge donor reneges

Table 5 Reasons for the arrival and departure of vertices and edges. ∗We do not consider edge removal due to

pregnancy/sickness because there are a variety of ways in which pregnancy and sickness can affect the immune

system.

removed due to, e.g., crossmatch failures or donor refusals. Vertices are removed if the patient or

her respective donor must leave the pool, due to reasons ranging from a successful transplantation

to patient expiration.
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Figure 6 The evolution dynamics of a kidney exchange.

Figure 6 provides a snapshot of a compatibility graph over three points in time. The pool at time

t consists of unmatched patients and donors from time t− 1, any new pairs and altruists entering

the pool, and any vertices who were waiting for a successful match, but whose match failed (due

to, e.g., a positive crossmatch). Note that these patients are still formally in the pool, just marked

temporarily “inactive” until the status of their pending transplant is known. At each time period

t, vertices leave the pool permanently through any of the reasons in the first column of Table 5, or

are temporarily marked “inactive” through a pending match.
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7.1. Failure-aware matching in dynamic kidney exchange

We now present experimental results on dynamic kidney exchanges, taking transplant success

probabilities into account. We built a simulator that mimics the evolutionary diagram of Figure 6,

and used parameters learned from our work with UNOS. We vary the number of patient-donor

pairs and altruists entering the pool over time, and match on a weekly basis for 24 weeks. We

use the bimodal distribution of failure probabilities described in Section 4, as it more accurately

represents current kidney exchanges. The deceased-donor waitlist donation at the end of a chain

is counted in the expected number of transplants.

In our experience with UNOS, typically the time between a match offer and successful transplant

is about 8 weeks. Thus, whenever a match is offered in our simulator, involved patients and donors

become inactive in the pool, but can still be removed from the match for a variety of reasons

(“sniping” by another exchange, patient illness, etc). Of the 610 patients who had ever been listed

in the UNOS exchange program when these experiments were run (over a period of 106.7 weeks),

192 left for reasons other than receiving a kidney through UNOS. Thus, for each time period,

a vertex has a probability of 1− e(ln 418/610)/106.7 ≈ 0.003536 chance of leaving (for a non-UNOS

transplant reason). As in real kidney exchange, if a cycle fails, or part of a chain fails, then the

affected patients and donors are returned to the pool. However, if the reason for failure was that

patient-donor pair’s exit from the exchange, that vertex is removed permanently, along with all

incident edges. Results from crossmatches that were done as part of a failed cycle or chain are

maintained in the pool; if a crossmatch was negative, then future crossmatches performed on that

edge will also be negative. We assume all crossmatches are done simultaneously for cycles and

incrementally from the initiating non-directed donor until the first failure for chains.
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Figure 7 Expected number of transplants per week for graphs of different sizes. From left to right, 5 pairs and

1 altruist, 20 pairs and 4 altruists, and 25 pairs and 5 altruists (on expectation) appear every week.

Figure 7 shows the number of expected transplants per week on graphs of three different sizes,

each generated from the Saidman et al. (2006) distribution of compatibility graphs. (In the following
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section, we generate graphs from the UNOS distribution.) In expectation, 5, 20, or 25 pairs and

1, 4, or 5 altruists appear weekly in each of the three graphs. Failure-aware matching typically

results in roughly twice as many expected transplants than maximum cardinality matching. The

slight increase in weekly expected matches for both matching techniques is due to the buildup of

unmatched patient-donor pairs and altruists in the pool over time; larger pools typically admit

larger matchings.
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Figure 8 Expected aggregate transplants over 24 weeks, for increasing |V | (and |A|= 0.1|V |).

Figure 8 gives aggregate results for total number of expected transplants over 24 weeks, for

graphs of varying size, for both failure-aware and maximum cardinality matching. Graphs have

10% as many altruists on top of the patient-donor pool. The gap between failure-aware and non-

failure-aware matching widens as the activity level of the dynamic kidney exchange increases. For

our largest graphs, failure-aware matching improved expected transplants by a factor of three over

maximum cardinality matching. In the following section, we will explore how these global efficiency

gains change as we prioritize highly-sensitized patients and on graph distributions that more closely

mimic presently fielded exchanges.

8. Balancing efficiency and fairness in failure-aware kidney exchange

So far, we have motivated a move to failure-aware kidney exchange optimization from a global

efficiency perspective. One might ask how this affects fairness. For example, a proposed transplant

to a highly-sensitized patient might intuitively fail with higher probability than one to a patient

of low sensitization due to coupled health issues (e.g., chronic illness) in the former, and thus

the failure-aware approach could disfavor highly-sensitized patients. While data from the UNOS

kidney exchange (Kidney Paired Donation Work Group 2013) does not show a correlation between
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post-match failure and CPRA, data from other exchanges does show such a correlation (e.g.,

Ashlagi et al. 2011, Glorie 2012). Regardless, prioritizing highly-sensitized patients is currently

done explicitly or implicitly in fielded kidney exchanges, so we address that here.

In general, striking a balance between fairness and efficiency in kidney exchange is an increasingly

important line of work combining medical policy, economics, and optimization. Roth, Sönmez, and

Ünver (2005b) define a fair mechanism to be one that equalizes, to the greatest extent possible,

patients’ chances of getting a match. While this is almost certainly too strict a fairness criterion

to be fielded in practice, the notion of prioritizing some patients—possibly at the cost of overall

efficiency in the exchange—is common (and is performed in the current UNOS exchange as well).

Recent and parallel work by Bertsimas, Farias, and Trichakis (2011, 2012) and by Caragiannis

et al. (2009) studies the price of fairness, a measure of the tradeoff between fairness and efficiency,

in general resource allocation problems. Hooker and Williams (2012) provide general Rawlsian

equity optimization models that maximize the minimum utility of any one agent or set of agents.

Bertsimas, Farias, and Trichakis (2013) design a realistic method for maximizing, given a set of user-

defined fairness constraints, some notion of efficiency in the deceased donor kidney transplantation

problem, where patients on a waiting list are allocated cadaveric kidneys. In general, accurate

quantification of the theoretical and empirical advantages and disadvantages of various fairness

definitions would be of great value to policymakers in the kidney exchange community.

In this work, we adapt a fairness criterion due to Dickerson et al. (2014b), who investigated

the price of fairness in kidney exchange. They proved analytically that the price of fairness in a

static, deterministic, simplified model of kidney exchange is low. In the rest of this section, we show

(experimentally) that the price of fairness in both static and dynamic failure-aware models is also

typically low. More importantly, we show that failure-aware matching under well-chosen fairness

criteria results in more expected transplants to both the global pool and highly-sensitized patients

than maximum cardinality matching. We conclude that there is an enormous “price of using the

wrong model” that is potentially more harmful to all patients.

8.1. Weighted fairness as a prioritization scheme for sensitized patients

One simple method to emphasize a certain class of patient-donor pairs—for us, those in the set of

highly-sensitized vertices VH—is to increase the weight of edges with a sink in VH . This definition

generalizes the policy UNOS currently applies to highly-sensitized patients in the fielded kidney

exchange, where incoming edges to patients above a certain CPRA threshold are given a positive

constant additive weight increase. We adopt a parameterized form of this rule here.

To implement this rule, Dickerson et al. (2014b) build on the standard kidney exchange integer

programming formulation and rewrite the objective as follows:

max
∑

c v∆(c)xc
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Here, v∆(c) is the value of a cycle or chain c (either the weight in the deterministic model or the

expected utility in our failure-aware model) such that the weight of each edge e∈ c is adjusted by

some re-weighting function ∆ :E→R.

A simple example re-weighting function is multiplicative:

∆β(e) =

{
(1 +β)we if e ends in VH

we otherwise

Intuitively, for some β > 0, this function scales the weight of edges ending in highly-sensitized

vertices by (1 + β). For example, if β = 0.5, then the optimization algorithm will value edges that

result in a highly-sensitized patient receiving a transplant at 50% above their initial weight (which

may then be discounted by other factors like failure probability and chain position, as in our paper’s

current model).

For any M ∈M, let M ′ be the matching such that every cycle c ∈M has augmented weight

v∆(c)—that is, M ′ is the same set of cycles included in the initial matching M , only with utilities

associated with those cycles in accordance with re-weighting function ∆. Then define the weighted

fairness rule u∆ in terms of the utilitarian rule u applied to the augmented matching M ′, such that

u∆(M) = u(M ′). Thus, the clearing problem is rewritten as finding M∗ = arg maxM∈M u∆(M).

In the rest of this section, we explore the effect this weighted fairness rule has on the expected

number of transplants performed in the pool as a whole and by highly-sensitized patients in VH ,

under a variety of modeling assumptions.

8.2. Experiments in the static setting

We begin by studying the weighted fairness rule in the context of static kidney exchange. We do

this on both the 161 individual UNOS match runs to date, and on generated graphs that mimic

the UNOS graphs. The generator runs by loading all pairs and altruistic donors that have ever

been present in the UNOS pool into a set of vertices V , then drawing with replacement vertices

from that pool and running the UNOS edge existence algorithm on the sampled vertices to create

a compatibility graph. We test these real or sampled graphs under three probability distributions:

constant and bimodal as above, as well as a differently-distributed bimodal family that draws failure

probabilities in accordance with those rates published by Ashlagi et al. (2011). Critically, this last

distribution correlates edge failure rate with patient CPRA; incoming edges to highly-sensitized

patients are much more likely to fail than incoming edges to the rest of the pool. Specifically,

they state that patients with a CPRA above 75 have a crossmatch failure probability of 0.5, while

those with lower CPRA values (reported in ranges [0–24], [25–49], and [50–74]) have much lower

probabilities of crossmatch failure (0.05, 0.2, and 0.35, respectively). They also experiment with an

additional additive exogenous failure rate varied between 0 and 0.16; we use 0.08 in our experiments.
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8.2.1. Constant failure rate We begin by assuming that every edge fails with the same

constant probability, as in previous sections. This assumption, while not likely to hold in practice,

is easily parameterized and allows us to explore the differences in models as matchings become less

reliable. Different exchanges have different failure rates, and this exploratory analysis might serve

as a useful tool to quantify the marginal gains of decreasing edge failure rates.

Figure 9 compares the weighted fairness rule u∆ applied to the failure-aware model against the

utilitarian rule applied to the deterministic model, which computes a maximum cardinality disjoint

cycle cover without regard for edge failure. Figure 9(left) shows that the efficient failure-aware

matching always results in at least as many (typically more) expected transplants as the efficient

deterministic matching. However, interestingly, even matchings under the fair rule u∆ in the failure-

aware model often result in significant overall gains when compared to the utilitarian deterministic

matching. Figure 9(right) shows that even the fully efficient matching rarely results in a loss of

highly-sensitized transplants, and that even slightly prioritizing sensitized patients results in large

gains (at low cost to global efficiency).
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Figure 9 Percentage change in expected number of transplants (left) and sensitized transplants (right) for

actual UNOS match runs using failure-aware matching—possibly with fairness constraints—instead of maximum

cardinality matching. The x-axis varies constant edge failure probability from 0 to near 1.

For example, for β = 1.0—that is, when highly-sensitized patients are valued twice as much

as lowly-sensitized patients—we see a drop of only a couple of percentage points of expected

transplants when there is no probability of edge failure. This is countered by a very large (over

30%) gain in the expected number of highly-sensitized transplants. In fact, when the probability

of edge failure is at least 45%, valuing highly-sensitized transplants at 11x (β = 10.0) that of a

lowly-sensitized patient results in more expected total transplants than deterministic matching

that does not consider fairness.
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Figure 10 Percentage change in expected number of transplants (left) and sensitized transplants (right) for

generated UNOS match runs using failure-aware matching—possibly with fairness constraints—instead of

maximum cardinality matching. The x-axis varies constant edge failure probability from 0 to near 1.

Also, we see that efficient failure-aware matching almost always results in more expected sensi-

tized transplants than deterministic matching, with the exception of a small relative drop at failure

rates around 35–45%. This can be explained by comparing, given a failure probability p, the rela-

tive expected utilities of a 2-cycle c2 (u(c2) = 2(1− p)2) and 3-cycle c3 (u(c3) = 3(1− p)3). When

p < 1
3
, u(c2) < u(c3), so the optimizer favors 3-cycles over 2-cyles. When p > 1

3
, u(c2) > u(c3), so

the optimizer favors 2-cycles. Highly-sensitized patients are often matched in 3-cycles; intuitively,

if a highly-sensitized pair’s donor can donate to another pair, it is more likely that this pair will

not be able to connect back to the highly-sensitized pair directly (by virtue of that initial pair

being highly-sensitized and thus having low in-degree) via a 2-cycle but will rather connect back

through a lowly-sensitized pair via a 3-cycle). So, for p < 1
3
, failure-aware gains are only realized by

rearranging the low-probability tails of chains into 2- and 3-cycles, while for p > 1
3
, failure-aware

optimization may start to cannibalize 3-cycles (that likely contain highly-sensitized pairs). Empir-

ically, this is only an issue for p ∈ ( 1
3
,0.45]; once p > 0.45, the efficient objective’s gains outweigh

these losses. Furthermore, we see that a small prioritization (even β = 1) results in both global and

sensitized gains even for p∈ ( 1
3
,0.45] (and for other values of p).

This general behavior is supported in Figure 10, which shows the same experiments on generated

data that mimics the UNOS distribution, for pools of size 250—roughly the size of the current

UNOS pool. We include these results because, in Section 8.3, we run dynamic experiments on data

that mimics the UNOS pool (unlike the results in Section 7, which used the Saidman et al. (2006)

generator). The similarity of Figures 9 and 10 serves as validation of the simulator.

It may be difficult to accurately estimate failure probabilities on edges in practice. Indeed, in

extreme cases, it may even be deemed unethical to allow vastly different failure probabilities to
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be included in the optimization process, as the probabilities act as a prioritization tool. As these

experiments show, one could simply set all the probabilities in the optimization to be equal in

order to not disfavor patients with high failure probabilities. Even with this extreme approach, the

failure-aware framework strikes good endogenous tradeoffs between short chains, long chains, short

cycles, and long cycles—unlike the current deterministic approach.

8.2.2. Bimodal failure rate We now consider the weighted fairness rule in the static setting

with bimodal failure probabilities. We will refer to the prior bimodal failure distribution derived in

Section 4, where edge failure rates are not correlated with patient CPRA, as the “UNOS Bimodal”

distribution. We also perform experiments on a distribution derived from published failure rates

from a different exchange, the Alliance for Paired Donation (APD), where edge failures are corre-

lated with patient CPRA (Ashlagi et al. 2011). We refer to this distribution as “APD Bimodal.”

This difference in correlations could be due to highly-sensitized patients being less likely to find a

match outside of the exchange (e.g., on the deceased donor wait list or another exchange) but more

likely to have a match fail due to medical reasons such as crossmatch incompatibility—whereas

an easy-to-match patient might quickly find a living donor elsewhere, but be less likely to have a

match fail for medical reasons. UNOS has a slower matching cadence than some other exchanges

like the National Kidney Registry (NKR), which matches whenever the underlying compatibility

graph changes, so easily-matched patients may be “sniped” by such faster-moving exchanges. By

lowering these non-medical reasons for failure (e.g., by merging all exchanges into a single program

to reduce inter-exchange competition), the overall failure rate for highly-sensitized patients would

probably become higher than that of other patients.

Figure 11 shows expected gains in both the number of overall transplants (dashed line) and

sensitized transplants (dotted line) relative to a baseline of deterministic matching (solid line). The

expected number of failure-aware overall and highly-sensitized transplants are compared against

the expected number of deterministic overall and highly-sensitized transplants, respectively, as the

fairness factor β is increased from 0 (fully efficient matching) to 10 (highly biased matching).

Immediately visible is that, when failure rates are not correlated to CPRA, the gains seen by

failure-aware matching are quite large across the board. This aligns with our Saidman-generated

results from Section 7, as well. However, when failure rates are highly correlated with patient

CPRA, the situation becomes more delicate. Failure-aware matching without fairness consider-

ations does result in a large gain in overall expected transplants, but harms highly-sensitized

patients. We can identify a “sweet spot” that balances these conflicting objectives; empirically,

this is approximately when β ∈ [2,4]. When β is toward the lower end of this interval, the loss in

marginalized transplants is zero while the gain in global expected transplants is positive (approxi-

mately 10%). When β is toward the higher end of this range, the global gain in transplants is zero
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Figure 11 Change in the expected number of transplants on average for actual UNOS match runs when using

failure-aware matching instead of maximum cardinality matching, assuming bimodal edge failure rates derived

from UNOS (left column) and APD (right column). The x-axis varies the β fairness factor applied to the

failure-aware matching algorithm.

while the gain in marginalized transplants is positive (approximately 25%). Within the interval,

we realize gains in both objectives—a clear win.

As in the constant failure probability case, Figure 12 shows similar results on generated UNOS

compatibility graphs, under both failure rate distributions, for |V |= 250. This provides validation

for our simulator. In the rest of the section, we further explore the correlated failure rate setting in

the realistic dynamic kidney exchange simulator presented in Section 7 using these equally realistic

compatibility graphs, and show that this same balance of fairness and efficiency can be struck so

that both global efficiency and the expected number of transplants to highly-sensitized patients

increases.

8.3. Experiments in the dynamic setting

We now continue our exploration of the correlated failure probability case into a dynamic model.

This is important because, although we showed that a balance can be struck between efficiency

and fairness in the static case such that failure-aware matching results in gains in both objectives,

it is possible that this balance comes at the cost of matching “easier” hard-to-match pairs in the

now and leaving the “hardest” hard-to-match pairs for later. We show that this is not the case.

Specifically, the same winning balance can be struck in the dynamic setting. (In the interest of

space, we do not include experiments in the non-correlated bimodal failure case, because even

failure-aware matching without fairness considerations results in large increases in both global and

marginalized transplants over time. In this sense, the experiments in this section on the correlated

APD distribution give a conservative estimate of the gains seen by failure-aware matching in

dynamic kidney exchange.)
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Figure 12 Change in the expected number of transplants on average for generated UNOS match runs when

using failure-aware matching instead of maximum cardinality matching, assuming bimodal edge failure rates

derived from UNOS (left column) and APD (right column). The x-axis varies the β fairness factor applied to the

failure-aware matching algorithm.

|V |= 300 |V |= 400 |V |= 500 |V |= 600 |V |= 700 |V |= 800
Gain (%) Gain (%) Gain (%) Gain (%) Gain (%) Gain (%)

Efficient +0 (0.0%) +5 (5.9%) +1 (1.9%) +2 (2.5%) +9 (7.1%) +5 (3.6%)

Fair, β = 1 +2 (4.2%) +5 (6.7%) +1 (1.0%) +8 (8.1%) +8 (6.2%) +11 (7.3%)

Fair, β = 2 +0 (0.0%) +3 (4.1%) +0 (-1.3%) +3 (2.4%) +2 (1.8%) +5 (3.4%)

Fair, β = 3 +2 (4.3%) -1 (-2.1%) -1 (-1.1%) -1 (-1.3%) +3 (2.8%) +2 (1.5%)

Fair, β = 4 +2 (4.3%) +2 (2.5%) +2 (2.5%) -1 (-1.3%) +1 (0.9%) +3 (2.3%)

Fair, β = 5 +0 (-0.1%) +1 (2.0%) +3 (4.0%) +0 (-0.5%) -1 (-0.8%) -2 (-1.7%)

Table 6 Gains in expected number of transplants overall, for increasing values of fairness β and for different

arrival rates.

We perform experiments in the same dynamic model as Section 7, only this time using the

realistic UNOS graph generator validated above. We vary arrival rates over 24 time periods with

{12,16 . . . ,32} pairs or altruistic donors arriving per time period, as sampled from the real pairs

and altruists. Tables 6 and 7 show the median overall absolute and percentage gains and losses in

number of transplants and number of sensitized transplants, respectively, aggregated over all time

periods by failure-aware matching for β ∈ {0,1, . . . ,5} compared against deterministic matching.

Mirroring the static experiments above, we see that for low values of β, failure-aware matching

results in global gains and marginalized losses. However, as above, for β ≈ 2, a winning balance is

struck, with nonnegative gains in expected overall transplants and significant gains in number of

highly-sensitized transplants. Perhaps most excitingly, for higher values of β, the number of highly-

sensitized transplants increases markedly (reaching +20%–+40% over deterministic matching for

higher arrival rates), while the overall effect on global efficiency is negligible. In reality, kidney

exchanges are often seen as a “last hope” for highly-sensitized patients; even with a higher likelihood
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|V |= 300 |V |= 400 |V |= 500 |V |= 600 |V |= 700 |V |= 800
Gain (%) Gain (%) Gain (%) Gain (%) Gain (%) Gain (%)

Efficient -4 (-40.0%) -2 (-21.4%) -3 (-15.4%) -4 (-21.4%) -5 (-23.4%) -6 (-19.1%)

Fair, β = 1 -2 (-26.1%) +0 (0.0%) -1 (-10.0%) +0 (0.0%) +0 (-1.3%) -1 (-4.4%)

Fair, β = 2 +1 (9.5%) +3 (18.8%) +0 (1.2%) +2 (9.9%) +2 (11.2%) +5 (15.5%)

Fair, β = 3 +0 (5.6%) +1 (10.8%) +1 (11.7%) +7 (35.1%) +8 (33.2%) +6 (20.3%)

Fair, β = 4 +0 (5.6%) +3 (29.0%) +2 (11.0%) +8 (46.2%) +6 (23.9%) +8 (29.3%)

Fair, β = 5 +0 (0.0%) +2 (22.6%) +2 (12.1%) +8 (43.7%) +6 (24.0%) +8 (23.9%)

Table 7 Gains in expected number of highly-sensitized transplants, for increasing values of β and for different

arrival rates.

of pre-transplant match failure, we have shown that failure-aware matching can increase successful

match rates for these highly-prioritized patients at no cost to the global system efficiency.

9. Conclusions and future work

In this paper, we addressed the problem of edges in a matching (e.g., recommended transplants

in a kidney exchange) failing after a matching algorithm has committed to them. This is a timely

problem; in the UNOS nationwide kidney exchange, only 7% of algorithmically matched patients

actually receive a transplanted kidney through the exchange, and similar rates apply to other kidney

exchanges. We introduced a failure probability to each edge in a compatibility graph, and defined an

expected utility of edges, cycles, chains, and matches. This model drives our main theoretical result,

that (with high probability, in a random graph model) there exists a non-maximum cardinality

matching that provides linearly more utility than any maximum cardinality matching. We then ran

simulations on real data from all UNOS match runs between 2010 and late 2014, and found that

our failure-aware matching increases the number of expected transplants dramatically. Critically,

we also found that this result is robust to uncertainty over the true underlying failure rates—an

uncertainty that exists in reality.

Armed with this new model, we showed that the current state-of-the-art kidney exchange solver

(used in the UNOS kidney exchange) cannot be used for this problem because now each edge

has both a weight and a failure probability, and simply multiplying them to get a revised weight

would make the algorithm incorrect. We designed a branch-and-price-based optimal clearing algo-

rithm specifically for the probabilistic exchange clearing problem. It has many enhancements over

the prior best kidney exchange clearing algorithm. For one, we designed a failure-aware column

generator that incrementally brings only “possibly good” chains into consideration. We showed

experimentally that this new solver scales well on large simulated data. We then developed a real-

istic model of dynamic kidney exchange based on our experiences with, and data from, UNOS, and

showed that failure-aware matching in dynamic graphs increases expected transplants significantly.

Finally, we explored the effect of failure-aware matching on marginalized patients. This led to the
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main practical result of this paper: that it is possible to strike a balance between fair and efficient

failure-aware matching that results in more expected transplants both globally and to marginalized

patients specifically, in both the static and dynamic cases, in a variety of graph distributions.

Endnotes

1. This paper is a significant extension of Dickerson et al. (2013a), and includes new compu-

tational ideas, techniques, and results on real kidney exchange data from the UNOS nationwide

kidney exchange from its inception in 2010 through November of 2014 and on simulated data at

sizes greater than any current fielded kidney exchange. It also benefits from extensive discussion

with surgeons and economists at the 2013 American Transplant Congress and 2014 World Trans-

plant Congress (especially regarding work by Leishman et al. (2013), Dickerson et al. (2013b),

and Dickerson et al. (2014a)).

2. Another challenge in kidney exchanges is that transplant centers hide some of their donor-

patient pairs and altruistic donors from the exchange and instead try to match them locally. This

is a major problem in practice. For example, of the pairs revealed to the UNOS exchange from its

beginning in October 2010 to May 2012, none could have been locally matched in their transplant

centers (Stewart et al. 2013). In other words, the centers did not reveal any of their pairs that

could be locally matched to the exchange. There is no perfect mechanism design solution to that

problem (see, e.g., Ashlagi and Roth (2014), Ashlagi et al. (2015), Sönmez and Ünver (2013)). Still,

the only way to motivate the centers to fully reveal their pairs and altruists is by mandate, and

it is not clear that is politically viable. This paper does not address this problem, except to the

extent that better matching generally speaking gives more motivation for the centers to participate

because success chances for their patients become better and wait times shorter.

3. The aggregate match data from which we infer crossmatch failure probabilities is available in a

report from the Kidney Paired Donation Work Group (2012) and summarized by Leishman et al.

(2013). Updated aggregate data is now available in a report from the Kidney Paired Donation

Work Group (2013); this most recent data was not incorporated into our experiments, but is very

similar to that which was.
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