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Abstract—In many Twitter applications, developers collect
only a limited sample of tweets and a local portion of the Twitter
network. Given such Twitter applications with limited data, how
can we classify Twitter users as either bots or humans? We
develop a collection of network-, linguistic-, and application-
oriented variables that could be used as possible features, and
identify specific features that distinguish well between humans
and bots. In particular, by analyzing a large dataset relating to
the 2014 Indian election, we show that a number of sentiment-
related factors are key to the identification of bots, significantly
increasing the Area under the ROC Curve (AUROC). The same
method may be used for other applications as well.

I. INTRODUCTION

The openness of Twitter’s platform allows for, and even
promotes, programs that automatically post. These “bots” post
content ranging from helpful (e.g., recent news stories or public
service announcements) to malicious (e.g., spam or phishing
links). Such malicious bots on Twitter have become a nuisance,
even recently triggering a long diatribe in the New Yorker [1].
They are alleged to help political candidates skew public
perception; for instance, botornet.net asserts that former US
Presidential candidate Newt Gingrich gained over a million
followers on Twitter through the use of bots, a charge Mr.
Gingrich is reported to have denied. Similarly, Hill [2] reports
that “Facebook thinks 83 million of its users are fake” and
that “up to 29.9% of Barack Obama’s 17.82 million [Twitter]
followers and 21.9% of Mitt Romney’s 814,000 followers may
be fake”. In short, there is now a widespread belief that bots
constitute a significant part of the social media world—and
that many of them are malicious in their intent.

In this paper, we study the problem of identifying bots
on Twitter from an application perspective. Few real-world
applications analyze all of Twitter. Rather, most applications
focus on those portions of the Twitter tweet database and
the Twitter network that are relevant to them. For example,
if a politician were interested in tracking the recent Indian
elections, he would probably identify a set of topics of interests
(TOI) consisting of names of relevant politicians and relevant
political parties. The identification of bots may then be based
on a relevant subset of tweets and a relevant subset of the Twit-
ter network that are TOI focused. Compared to past work [3]
on bot identification in Twitter, TOI-focused applications may
not have a huge network with which to work, especially as
reconstructing a network from Twitter’s open API can pose
some challenges. In such industrial applications, there is a
critical need to identify bots:

1) For instance, in an election application we built, we
needed to predict the expected number of supporters
for a particular candidate. But in this prediction, we
needed to discount for bots.

2) We worked with a company that wanted to identify
the most influential Twitter users on a suite of topics
of interest to the company. They wanted to be sure
that the measure of influence discounted for bots (and
of course that bots were not included in the answer).

In contrast to past work, we approach this task from a
new viewpoint, namely analyzing the novel semantic feature of
tweet sentiment in human and bot accounts. To our knowledge,
no prior work has used tweet sentiment to separate human
and non-human users on Twitter. We present SentiBot, a
sentiment-aware architecture for identifying bots on Twitter.
We test it on a real dataset that does not include malicious
accounts already suspended by Twitter’s fielded bot detec-
tion algorithms, but—as validated by our human labelers—
still includes bots that slipped through their filter. Includ-
ing sentiment-aware features in the classification process im-
proves accuracy on these “harder” classification cases, where
presently fielded algorithms fail.

A. Previous Work

There has been recent interest in the detection of malicious
and/or fake users from both the online social networks and
computer networking communities. For instance, Wang [4]
looks at graph-based features to identify bots on Twitter,
while Yang, Harkreader, and Gu [5] combine similar graph-
based features with syntactic metrics to build their classifiers.
Thomas et al. [6] use a similar set of features to provide
a retrospective analysis of a large set of recently-suspended
Twitter accounts. Boshmaf et al. [7] instead create bots
(rather than detecting them), claiming that 80% of bots are
undetectable and that Facebook’s Immune system [8] was
unable to detect their bots. Lee, Caverlee, and Webb [9] create
“honeypot” accounts to lure both humans and spammers into
the open, then provide a statistical analysis of the malicious
accounts they identified. In computer networks research, the
detection of Sybil accounts in computer networks has been
applied to social network data; these techniques tend to rely
on the “fast mixing” property of a network—which may not
exist in social networks [10]—and do not scale to the size
of present-day social networks (e.g., SybilInfer [3] runs in
time O(|V |2 log |V |), which is intractable for networks with
millions users).



Most relevant is recent work by (Twitter employee and
anti-spam engineer) Chu and colleagues [11], [12], which
uses graph-theoretic, syntactic, and some semantic features to
classify humans, bots, and cyborgs (human-assisted bots) in
a Twitter dataset. With the exception of a few projects like
Chu et al. [12], bot detection research has focused only on
graph-theoretic properties of social networks and syntactic—
not semantic—content of tweets. Thus, this work primarily
focuses on the semantic feature of tweet sentiment (at the
individual user or neighborhood level). While work exists that
uses tweet sentiment to gauge public opinion (see, e.g., [13]–
[16]), to our knowledge, this is the first time sentiment has
been used for account verification and classification.

B. Our Contribution

In this paper, we propose SentiBot, an architecture and
associated set of algorithms that automatically identifies bots
on Twitter by using—for the first time—a combination of
features including tweet sentiment. At a high-level, SentiBot
can draw features from:

1) Sophisticated sentiment analysis techniques [13],
[14], [17], [18] to analyze sentiment on Twitter on
a per-user basis on a variety of topics;

2) Neighborhood-aware semantic metrics on a per-user
and per-topic basis (e.g., “does this user tend to
disagree with the users she follows?”);

3) Syntactic tweet metrics associated with a user such
as the average number of hashtags, repeated tweets,
and a variety of other such proven statistics;

4) Other semantic linguistic models such as the online
version of latent Dirichlet allocation (LDA) [19] to
identify and consider the topics discussed by various
Twitter users; and

5) Graph-theoretic and a variety of other metrics.

This defines a set of contextual variables associated with
each user in a dataset D; SentiBot then automatically com-
putes values of each contextual variable for each user in the
dataset. We will discuss these variables and the SentiBot
architecture in detail in Sections II and III. Then, given
a labeled training dataset, SentiBot builds an ensemble of
classifiers using standard machine learning techniques, and
optimizes for maximum precision or recall. In Section IV,
we conduct a detailed experimental analysis of the SentiBot
bot detection framework applied to a real-world dataset of 7.7
million Indian political tweets by over 555,000 users and show
that it can achieve acceptable and realistic precision and recall
numbers, finding bot accounts that were not caught by Twitter’s
fielded malicious account detection algorithms.

Our key result shows that of the 25 top contextual variables
in determining whether a user is a bot or not, 19 are sentiment-
related. Moreover, in our real world India Election Dataset
(IEDS), 14 of these 19 sentiment related variables are tied
to a specific topic of interest to the application. This suggests
two things: (i) sentiment plays a significant role in identifying
bots, and (ii) taking the topics of interest to an application
into account is very important for identifying bots associated
with a specific application.

II. DATASET AND ARCHITECTURE

The architecture of our SentiBot system is shown in Fig-
ure 1. We will now overview each portion of the architecture.
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Fig. 1: Architecture of the SentiBot System

We use the “India Election Dataset” (IEDS), a real-world
dataset that was collected from July 15, 2013 to March 24,
2014. It consists of information on over 550,000 Twitter
accounts and 7.7 million tweets on the topic of the upcoming
2014 Indian election. A tweet is considered “on topic” (and
included in IEDS) if it includes one of a number of keywords
pertaining to the election (e.g., Indian political parties like
“Shiv Sena” or “BJP”, politicians like “Rajnath Singh” or
“Nitish Kumar”, etc.) or if it was tweeted by a user who
frequently tweets about such political keywords. We discuss
the set of these “topics of interest” (TOI) later in this section.
Critically, there exists a strong incentive to deploy bots in the
IEDS dataset, as noted by the Indian press’ coverage of the
use of bots and fake accounts during this election cycle [20].

Twitter Sentiment Extraction. SentiBot used the Twitter API
to first identify a set U0 of users during the selected time
frame who had tweeted on at least one “topic of interest”
in a set TOI. A TOI is any set of terms. In the case of
IEDS, the TOI consisted of politicians and political parties
involved in the election. For each day d, each user u, and
each t ∈ TOI, we calculated the sentiment score SS(d, u, t) of
user u on topic t, averaged across all tweets on topic t posted
by the user on that day. We used SentiMetrix’s commercially
available sentiment scoring engine [17], [18] that assigns a
value between−1 (“maximally negative”) and +1 (“maximally
positive”) to score the intensity of sentiment on topic t in a
tweet. Of course, this scoring engine can be swapped out with
other similar scoring engines such as those due to Barbosa and
Feng [13] or Agarwal et al. [14].

Network Database. SentiBot then examines the profiles of
users in U0. For each user in U0, it identifies the set U1 =
{u′ | (∃u ∈ U0) such that either u follows u′ or u′ follows u}
of followers and followees of individuals in U0. A set U2 =
{u′′ | (∃u′ ∈ U1) such that either u′ follows u′′ or u′′ follows
u′} is also constructed. The complete set of users considered
is U = U0 ∪ U1 ∪ U2 and the network constructed is the
subgraph of the Twitter follower network induced by the set
U of users. There is an edge from user u to u′ in this subgraph
if u follows u′. In the case of IEDS, there were over 40 million
edges considered in total.



User Profile Extraction. For each user in U , we extract a
profile by using not only their Twitter profile, but also by
looking at their position in the network, their tweets, and
various aspects of their behavior. This will be described in
great detail in Section III. Note that throughout this paper,
we use the term “Twitter profile” to refer to the user profile
displayed on Twitter and the term “User Profile” to refer to
the profile we define in this paper.

CV and DV database. Using the three preceding components,
SentiBot builds a database whose rows correspond to users
and whose columns correspond to a set of contextual variables
(CVs). These variables describe various aspects of the user’s
sentiments, topics he may tweet about, properties of the
user with respect to the local or global IEDS network, and
more. All of these aspects of a user’s behavior are stored
in a database. In addition, for our training set alone, the
rows of users corresponding to our training data include one
dependent variable (DV) BOT set to 1 if the user is a bot and
0 otherwise. The identification of the contextual variables—
specifically which ones are relevant in deciding whether an
entity is a bot or not in datasets such as ours—is one of the
main contributions of this paper.

Ensemble of Classifiers. We used well-known classifiers to
answer the question: Is a user u a bot or not? In total, we tried
six high-level classifiers including support vector machines
(SVM) for classification, Gaussian naive Bayes, AdaBoost,
gradient boosting, random forests, and extremely randomized
trees; we discuss the optimization and (hyper)parameter selec-
tion process in detail in Section IV. The result of applying
these classifiers is a labeling and confidence bound, for each
user in a test dataset, of whether that user is a bot or not.

Training and Testing Datasets. We randomly selected a train-
ing set of 897 users from the India Election Dataset (IEDS).
The true number was larger, but some of the users had been
flagged as malicious accounts by Twitter prior to our human
annotation, so these users were discarded from our dataset.
We note that this makes our bot classification problem more
difficult, as Twitter is also incentivized to remove malicious
accounts; our dataset only includes those bots that slipped
through Twitter’s filter. We used Amazon Mechanical Turk to
get five sets of annotations on whether these users were bots
or not. We provided each annotator with information on each
of the 897 users and asked them to review the users’ Twitter
profiles and tweets to decide whether each user was likely a
bot or human. We also asked each Mechanical Turk user to
write at least three sentences of natural text describing why a
user is labeled as a bot or human; this provided a hedge against
the risk that the Mechanical Turkers would not do a thorough
job. As yet another step to ensure they did a good job, we
included a monetary incentive for reporting correctly, adding
a bonus of USD $1 for every correctly identified bot (from a
subset of previously determined bot accounts) and a negative
bonus of USD -$1 for each incorrectly identified bot account
(from a subset of previously determined bot accounts). In the
event of disagreement across the Mechanical Turk results, we
took a majority vote across the set of 897 users to determine
a final label. We call this labeled training data the annotated
IEDS dataset.

As discussed in more detail in Section IV, we performed
a 50/50 train/test split on the annotated IEDS. We learned

classifiers on the training split (via 5-fold cross-validation
and a grid search over appropriate hyperparameters for each
classifier) and tested on the independent test set. We report
results in Section IV.

III. SENTIBOT USER PROFILE

In this section, we define the profile of a user that is used
by SentiBot. The measures are divided into four categories,
each described in a subsection below.

1) Tweet Syntax: This class of variables captures various
aspects of the construction of tweets. This class of
variables has been used before (see, e.g., [5]) and is
not claimed as a novel contribution.

2) Tweet Semantics: This class of variables captures var-
ious aspects of the content of tweets from a semantic
and sentiment orientation and how they have changed
over time. This class of contextual variables, as well
as (3) and (4) below, consists of several sentiment-
related variables that have never been used before.

3) User Behavior: This class of variables captures var-
ious aspects of the user (derived from his Twitter
profile when available) as well as several sentiment-
related variables showing the user’s sentiments and
their variance over time.

4) User Neighborhood: This class of variables cap-
tures various aspects of the immediate neighborhood
around the user, together with what those neighbors
are discussing and what sentiments they hold on
various topics. It includes several sentiment-related
contextual variables that capture measures of the
user’s sentiments (on various topics) as compared to
those of his neighbors.

In short, a large number of variables in our study are sentiment
related; out of the 145 variables in our study, 135 were
sentiment-related and 128 were TOI-related. Note that TOI-
specific variables may have a sentiment component and hence
these two counts can have overlap. For instance, a contextual
variable such as “Average Sentiment (BJP)” captures the
average sentiment (in IEDS) on the topic “BJP” (referring to
Bharatiya Janata Party, an Indian political party).

A. Tweet Syntax

We used the following variables to describe the syntax of
tweets posted by a user. These are common to many other
studies (see, e.g., Yang, Harkreader, and Gu [5]).

1) Average number of hashtags: This is the average
number of hashtags used in a tweet posted by user u.

2) Average number of user mentions: This is the
average number of other users mentioned by user u
in his tweets.

3) Average number of links: This is the average num-
ber of links present in tweets by user u.

4) Average number of special characters: This is the
average number of special characters (e.g., emoti-
cons) present in tweets by user u.



TABLE I: Toy dataset consisting of three users tweeting about
a single topic t1 (left) and their local network (right).

User Tweet ID Topic t1
u1 1 +0.2
u2 2 +0.8
u1 3 +0.3
u2 4 +0.2
u3 5 −0.1
u1 6 −0.2
u1 7 +0.3

u3#

u1# u2#

B. Tweet Semantics

We used the following variables to describe the semantics
of tweets posted by a user u. To our knowledge, each of the
sentiment-based features presented is novel with respect to
determining whether or not a Twitter account is legitimate.
Before describing each feature, Table I presents a toy dataset
consisting of just three users, u1, u2, and u3, in a very small
network, tweeting about a single topic t1. We will refer to this
example dataset when describing some of the sentiment-based
features below.

1) Average topic sentiment(t): We identified the av-
erage sentiment expressed by user u on each topic
t ∈ TOI during the entire life-time of the IEDS
dataset. This average sentiment varied on a −1 to
+1 scale. Using the example dataset in Table I,
user u1’s average topic sentiment about topic t1 is
1
4 (0.2+0.3−0.2+0.3) = +0.15, or slightly positive.

2) Average topic sentiment(overall ): This is the aver-
age sentiment expressed by the user, averaged over all
topics about which the user expressed any sentiment.

3) Sentiment Polarity Fractions(t): For each topic
t ∈ TOI, we tracked the percentage of tweets posted
by user u that were positive (resp. negative) on
topic t. Again referring to Table I, user u1’s positive
sentiment polarity for topic t1 is 3

4 , with negative sen-
timent polarity fraction 1

4 . We note that the positive
and negative sentiment polarity fractions need not add
up to 1 due to tweets with neutral sentiment on or no
mention of topic t1.

4) Sentiment Polarity Fractions(overall ): This repre-
sents the average sentiment polarity fraction for the
user, aggregated across all topics about which the user
expressed sentiment.

5) Contradiction Rank(t): For each topic t ∈ TOI,
let x+t be the fraction of tweets showing positive
sentiment toward t out of the set of u’s tweets
showing any sentiment toward t. Similarly, let x−t
be the fraction of user u’s tweets showing negative
sentiment toward t out of the set of u’s tweets
showing any sentiment toward t. Similarly, define y+t
and y−t to be the fraction of tweets across all users
showing positive or negative sentiment toward topic t
out of all tweets showing any sentiment toward topic
t. Then define the contradiction rank of user u to
be CR(u, t) = x+t y

−
t + x−t y

+
t . Intuitively, a high

contradiction rank means that the majority of users
tend to disagree with u on topic t. Referring to the ex-
ample dataset in Table I, we calculate CR(u1, t1) as
follows. The user tended to post positively about t1,

so x+t1 = 3
4 and x−t1 = 1

4 . Similarly, the entire dataset
also tended to post positively about t1, so y+t1 = 5

7
and y−t1 = 2

7 . Thus, CR(u1, t1) =
3
4 ·

2
7+

1
4 ·

5
7 ≈ 0.393,

a fairly low contradiction rank.
6) Agreement Rank(t): For each topic t ∈ TOI, com-

pute x+t , x−t , y+t , and y−t as above. Then define
the agreement rank of user u to be AR(u, t) =
x+t y

+
t + x−t y

−
t . Intuitively, a high agreement rank

means that the majority of users tend to agree with
u on topic t. Thus, from the example in Table I,
AR(u1, t1) =

3
4 ·

5
7 +

1
4 ·

2
7 ≈ 0.607, which is notably

higher than CR(u1, t1), as expected.
7) Dissonance Rank: Given a user u and agreement and

contradiction ranks for each topic t, we define a new
aggregate measure, the dissonance rank of u, as

DR(u) =
∑
t∈TOI

CR(u, t)/AR(u, t).

8) Positive Sentiment Strength(t): For each user u and
topic t, given the set of all tweets by u that contain
positive sentiment about t, this is the average such
positive sentiment strength about that topic. Consider
the toy example shown in Table I. User u1 tweeted
positively about topic t1 three times, in the first, third,
and seventh tweets. In these three tweets, the user’s
sentiment scores on topic t1 are +0.2, +0.3, and
+0.3, and so the positive sentiment score for this
user u1 is approximately 0.267.

9) Negative Sentiment Strength(t): For each user u
and topic t, given the set of all tweets by u that
contain negative sentiment about t, this is the average
such negative sentiment strength about that topic.
Again, consider the toy example shown in Table I.
User u1 tweeted negatively about topic t1 once, at
sentiment value −0.2; hence, the average negative
sentiment strength of user u1 about topic t1 is −0.2.
In general, positive sentiment strength and negative
sentiment strength can be viewed as measures of the
strengths of opinions that a user expresses. Some
users do not write neutral tweets; they may only write
tweets where strong opinions are expressed. Others
may mostly write tweets when they only have strong
negative opinions, and so forth. These two variables
try to capture such characteristics of users.

10) Positive Sentiment Strength(overall ): For each user
u, this is the average positive sentiment strength over
each topic t ∈ TOI.

11) Negative Sentiment Strength(overall ): For each
user u, this is the average negative sentiment strength
over each topic t ∈ TOI.

12) LDA topics: We identified a probability distribution
over the space of topics, specifying the probability
that the user discusses a topic. Here, the word “topic”
is not a topic of interest (which is application spe-
cific), but the set of topics identified in the entire
IEDS using latent Dirichlet allocation (LDA) [19] to
classify words (minus English stopwords and words
that did not occur more than once) in the tweets in
the IEDS into clusters. For example, we wondered
if humans are more focused in terms of the topics
they discussed than bots—and this variable was used



to capture some of these aspects. We did not include
sentiment-based analysis for these LDA topics.

C. User Behavior

This category covers temporal aspects of the user’s tweet-
ing habits. Of the properties shown below, (5)–(9) are novel.

1) Tweet Spread: Given a histogram over the 24 hours
of the day describing when the user tweeted, this
feature calculates the entropy of that user’s tweeting
times. For more information on using entropy as a
measure for tweet time “spread”, see the motivation
in Chu et al. [12].

2) Tweet Frequency: The average number of tweets put
out by user u on a daily basis. The motivation for this
variable was that perhaps users who tweet a huge
amount are actually bots.

3) Tweet Repeats: The average number of tweets that
are repeated by a user u.

4) Geoenabled: Are the user u’s tweets associated with
a geotag?

5) Tweet Sentiment Flip-Flops: This variable measured
the amount of flip-flopping in sentiment on a given
topic t ∈ TOI. A sentiment “flip” occurs when user
u put out a positive or negative tweet on a topic t
at one time and then reversed her sentiment on the
topic later. This variable measures the number of such
inversions (positive to negative and vice-versa) and
normalizes these inversions by the total number of
tweets authored by the user. In the example in Table I,
user u1 flip-flopped twice on topic t1 out of a total
of four tweets, for a score of 1

4 (2) = 0.5.
6) Tweet Sentiment Variance(t): For each topic t ∈

TOI, we measured the variance in sentiment ex-
pressed by the user over the entire IEDS dataset.

7) Monthly Tweet Sentiment Variance(t): As a user
may have legitimately changed her opinion on a topic
t during the eight months of our study, we also
tracked the average variance in sentiment exhibited
by user u on topic t on a monthly basis.

8) Average topic volume histogram(t): This variable
tracked the average (monthly) volume of tweets by
user u on each topic t ∈ TOI in the IEDS.

9) Average topic volume histogram(overall ): Averages
the preceding variable across all topics t ∈ TOI.

D. Network-centric User Properties

We also looked at network-centric user properties. Of the
properties show below, (4), (5) and (6) are novel.

1) In-degree: The number of users following u.
2) Out-degree: The number of users that u is following.
3) In/Out Ratio: The number of followers of a user u

divided by the number of users u is following.
4) Neighborhood Contradiction Rank(t): This is a

version of the contradiction rank where, for each topic
t ∈ TOI, y+t and y−t are computed only by looking
at tweets about t posted by neighbors of a specific
user u. Intuitively, a high neighborhood contradiction
rank NCR(u, t) for a user u and topic t ∈ TOI
signals that the neighbors of a user u tend to disagree

with that user about topic t. For example, the global
contradiction rank CR(u, t) could be high because
user u maintains a (valid) point of view not reflected
by the general population studied. However, one
would expect her neighborhood contradiction rank
NCR(u, t) to be lower in value because accounts in
her immediate neighborhood are “birds of a feather,”
sharing similar sentiments.
In the Table I example, user u1 neighbors only u3;
thus, y+t1 = 3

5 , y−t1 = 2
5 , and NCR(u1, t1) =

3
4 ·

2
5+

1
4 ·

3
5 ≈ 0.45. This is higher than the global contradiction
rank CR(u1, t1) because u1’s only neighbor (and thus
entire neighborhood) tweeted negatively about topic
t1, unlike u1 (and also the global sentiment toward
t1, which was generally positive).

5) Neighborhood Agreement Rank(t): This is a ver-
sion of the agreement rank where, like in the neigh-
borhood contradiction rank, y+ and y− are computed
only by looking at tweets in a one-hop neighborhood
around a user u. The neighborhood agreement rank
NAR(u, t) for a user u and topic t ∈ TOI is
similarly motivated. In the example from Table I,
NAR(u1, t1) = 0.55, which is lower than the global
AR(u1, t1), as expected.

6) Neighborhood Dissonance Rank: This is the local
version of the global dissonance rank DR(u). Given
a user u, define the aggregate measure

NDR(u) =
∑
t∈TOI

NCR(u, t)/NAR(u, t).

IV. EXPERIMENTAL RESULTS

In this section, we describe the experimental framework
used to train and test SentiBot on a real-world dataset (IEDS).
We compare the best classifier that does not include sentiment-
aware features to the best classifier that does include sentiment-
aware features, and show on IEDS that (i) including sentiment
in feature selection improves classification and (ii) some of
the most important features for separating human from bot
accounts are sentiment based.

A. Learning the classifiers

We use the (annotated) IEDS dataset that was described
in Section II. Feature extraction was performed as in Sec-
tion III, noting that features involving the global dataset were
extracted from the full IEDS. We then tried the following
families of classifiers: Gaussian naive Bayes, support vector
machines (SVMs) for classification, random forests [21], ex-
tremely randomized trees [22], AdaBoost [23], and gradient
boosting [24]. Our classifiers were built and trained on top of
scikit-learn [25], a machine learning toolkit supported
by INRIA and Google.

After data normalization, the classification problems ben-
efited from kernel PCA [26] as an additional preprocessing
and dimensionality reduction step. Kernel PCA, a generalized
form of principal component analysis (PCA) performed in a
reproducing Hilbert space, allows us to move away from the
simple linear features of traditional PCA. The main gain seen
from kernel PCA applied to our dataset was in de-noising;
since (i) even humans have difficulty discerning some bot



accounts from true human accounts and (ii) semantic feature
extraction is an imperfect process, our training data’s feature
values and class labels had considerable noise.

We performed a grid search over a wide range of hyperpa-
rameters for each of the classifiers; depending on the classifier
type, we searched over reasonable settings of the number of
estimators, type of estimator, learning rates, minimum number
of samples per split and per leaf, maximum depth of a tree,
kernel type, and kernel type parameters like γ and degree. For
each classifier and setting of hyperparameters, the grid search
used five-fold cross validation on the training data to fit the
model and get precision and recall scores. We optimized for
overall recall; thus, the classifier and hyperparameter vector
with maximum recall was used as the final classifier (and then
run on the independent test data for analysis).

B. Classification precision and recall

We performed the complete grid search over preprocessing
techniques, classifiers and hyperparameter vectors (described
above) twice: once on the full feature set presented in Sec-
tion III, and once on a reduced feature set consisting of only
those features that did not involve sentiment analysis. While
both the with- and without-sentiment feature set problems
benefited from kernel PCA as a preprocessing step, AdaBoost
performed best on the reduced feature set, and gradient
boosting performed best on the full feature set. Figure 2
gives receiver operating characteristic (ROC) curves for both
classifiers applied to the test dataset.
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Fig. 2: ROC curves comparing the best classifiers with and
without sentiment features. Area under the ROC curves are
0.73, 95% CI [0.67, 0.78] and 0.65, 95% CI [0.58, 0.71] for
with and without sentiment features, respectively, and one-
sided p� 0.01 for both classifiers being different than chance.

Intuitively, ROC curves visualize the performance of a
classifier (in terms of true positives and false positives) as
its discrimination threshold τ is tightened and loosened. As
Figure 2 clearly shows, the best classifier with access to the
full feature set (including sentiment variables) outperformed
the best classifier with access to only the reduced feature set.
The area under the curve (AUROC)—the probability that the

classifier will rank a randomly chosen bot as more “bot-like”
than a randomly chosen human—supports this notion, with a
0.73 for the full feature set compared to a lower 0.65 for the
reduced feature set.

In our application, false positives have a significant cost;
improperly accusing a legitimate account of being a bot either
results in increased human verification time on the side of
the social network owner or customer dissatisfaction on the
side of the (suspended) account holder. This cost is especially
high on our dataset, where our human labelers had difficulty
discerning bots from other humans—so verifying the proper
label of an account could require multiple human fact checkers.
Figure 2 shows that, for “strict” discrimination thresholds
(τ < 0.2) that enforce low false positive rates, the inclusion of
sentiment-based features nearly doubles the true positive rate
over classifying using non-sentiment-based features. Of course,
for all discrimination thresholds τ , the sentiment feature-aware
classifier performed at least as well and typically much better
than the classifier without sentiment features.

C. Feature importances
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Fig. 3: Top 25 most important features in the best classifier.
Sentiment-based features are shown in black, while standard
features are striped.

Figure 3 shows the 25 features identified by SentiBot as
being most significant in distinguishing between bots and non-
bots. We see immediately that 19 of the 25 top features are
sentiment related. Moreover, of these, 14 are topic specific.
The topic-independent sentiment features that are significant
are shown in Figure 4. Each chart in this figure shows
the value of the feature on the x-axis. These values are
placed into buckets based on the range of the variable (e.g.,
{[0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0]} for a variable with values
in the unit interval). For each bucket, we show on the y-axis
the percentage of human users (in black) with that feature
value in that bucket, and likewise for bots (striped). These
percentages are created after classifying the full IEDS dataset
and are computed from the 226,434 accounts for which our
classifier was at least 90% certain of either a “bot” or “human”
label. We discuss each of the topic-independent features below.
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(a) Sentiment flip-flop score.
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(b) Positive sentiment strength.

0	
  
0.1	
  
0.2	
  
0.3	
  
0.4	
  
0.5	
  
0.6	
  
0.7	
  

0-­‐0
.1	
  

0.1
-­‐0.
2	
  

0.2
-­‐0.
3	
  

0.3
-­‐0.
4	
  

0.4
-­‐0.
5	
  

0.5
-­‐0.
6	
  

0.6
-­‐0.
7	
  

0.7
-­‐0.
8	
  

0.8
-­‐0.
9	
  

0.9
-­‐1.
0	
  

Fr
ac
%o

n	
  
in
	
  R
an

ge
	
  

Nega%ve	
  Sen%ment	
  Strength	
  

Nega%ve	
  Sen%ment	
  Strength	
  

Human	
  

Bot	
  

(c) Negative sentiment strength.
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(d) Negative sentiment strength.
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Fig. 4: Histograms comparing bots against humans on five significant topic-independent sentiment-aware features.

1) Sentiment flip-flop score. We see from Figure 4a that
92.5% of bots have a sentiment flip-flop score in the
0–0.2 range; in contrast, only 26.5% of humans have
a score in this region. Almost no bots have sentiment
flip-flop scores greater than 0.1. This suggests that
bots rarely flip-flop on sentiment. In contrast, humans
tend to flip-flop much more.

2) Positive sentiment strength. Figure 4b shows that
61.4% of bots have a positive sentiment strength in
the 0–0.2 range. In contrast, only 4.7% of humans
have scores in this range. For users with positive
sentiment strength in the 0.2–0.3 range, it is hard
to distinguish between bots and humans; however,
most users with positive sentiment scores between 0.3
and 0.7 are humans. This suggests that when humans
express positive opinions on Twitter, they tend to
express strong sentiments as compared to bots.

3) Negative sentiment strength. Figure 4c shows that
59.2% of bots have a positive sentiment strength in
the 0–0.2 range. In contrast, only 7.5% of humans
have scores in this range. For users with negative
sentiment strength over 0.7, it is hard to distinguish
between bots and humans. However, (proportionally)
most users with negative sentiment scores between
0.3 and 0.7 are humans. This suggests that when
humans express positive opinions on Twitter, they
tend to express strong sentiments as compared to bots.

4) Fraction of tweets with sentiment (FTS). Figure 4d
shows that 29% of bots have an FTS in the 0–

0.2 range. When the FTS is between 0.2 and 0.5,
it is very hard to distinguish between humans and
bots. However, when a user’s fraction of tweets with
sentiment is between 0.5 and 0.9, he is much more
likely to be a human than a bot. 73.6% of humans
have FTS scores in this range, while only 0.185% of
bots have such an FTS score. And finally, few humans
(19%) score between 0.9 and 1, while 57.3% of bots
have FTS scores in this range. Thus, the frequency of
tweets with sentiment is a highly nuanced parameter
in distinguishing between bots and non-bots.

5) Dissonance rank. Figure 4e shows that 68.9% of bots
have a dissonance rank in the 0–2 range; in contrast,
only 29.1% of humans have dissonance scores within
this range. However, 57.4% of humans have scores in
the range 2–6, while only 30.4% of bots have scores
in this region. In short, humans tend to disagree more
with the entire Twitter population than bots.

V. CONCLUSION

In many real-world applications, developers are only able
to collect tweets from the Twitter API that directly address
a set of topics of interest (TOI) relevant to the application.
Moreover, in such applications, developers also typically only
collect a local portion of the Twitter network. As a conse-
quence, many traditional primarily network-based methods for
detecting bots [3]–[5], [11], [12] are less or not effective (e.g.,
if the topics are quite specific, not discussed by very popular
people, or not retweeted much), since a sparse subset of the



global network and tweet database based on a set TOI is
insufficient.

The SentiBot framework presented in this paper addresses
the classification of users as human versus bot in such ap-
plications. In order to achieve this, SentiBot relies on four
classes of variables (or features) related to tweet syntax, tweet
semantics, user behavior, and network-centric user properties.
In particular, we introduce a large set of sentiment variables,
including combinations of sentiment and network variables—
to our knowledge, this is the first time such sentiment-based
features have been used in bot detection. In addition, we intro-
duce variables related to topics of interest. We apply a suite of
classical machine learning algorithms to identify (i) users who
are bots and (ii) TOI-independent features that are particularly
important in distinguishing between bots and humans. Based
on an analysis of over 7.7 million tweets and 550,000 users
associated with the recently concluded 2014 Indian election
(where there were reports of social media campaigns [20]),
we were able to show that the use of sentiment variables
significantly improved the accuracy of our classification. In
particular, the Area under the ROC Curve (AUROC) increased
from 0.65 to 0.73. As an AUROC of 0.5 represents random
guessing, this reflects a (0.73−0.65)

0.15 ≈ 53% improvement in
accuracy. In addition, we discovered that (in our dataset):

1) Bots flip-flop much less frequently than humans in
terms of sentiment;

2) When humans express positive sentiment, they tend
to express stronger positive sentiment than bots;

3) A similar (but slightly more nuanced) trend holds
in terms of expression of negative sentiments by
humans; and

4) Humans disagree more with the general sentiment of
the application’s Twitter population than bots.

Our results can feed into many applications. For instance,
when assessing which Twitter users are influential on a given
topic, we must discount for bots—which requires methods like
those presented in this paper to identify bots. When identifying
the expected spread of a sentiment through Twitter, we again
must discount for bots. The paper presents a general framework
within which applications can identify bots using the relatively
limited local data they have.
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