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ABSTRACT
Fielded kidney exchanges typically use utilitarian or near-utilitarian
matching rules, potentially at great cost to certain classes of hard-
to-match patients. Dickerson, Procaccia, and Sandholm [6] re-
cently adapted the price of fairness, a measure of the tradeoff be-
tween fairness and efficiency, to kidney exchange; they showed that
the price of fairness is small in theory but often non-negligible in
practice. We extend their work by directly comparing fairness in
two models of kidney exchange—where edges either can or cannot
fail after an algorithmic match but before transplantation. On real
and simulated data, even matching under strict fairness constraints
in the model with edge failure results in significantly more expected
transplants than matching efficiently in the deterministic model.

1. INTRODUCTION
The preferred treatment for kidney failure is transplantation. Suc-

cessful transplantation of a kidney relies on tissue-type compati-
bility between the donor organ and patient, among other factors.
Compatibility is determined through a tissue-type crossmatch be-
tween a potential donor and patient’s blood. If the two types differ
substantially, the patient’s body will reject the donor organ.

Some patients are highly-sensitized, with a very low probability
of passing a crossmatch test with a random organ. For these pa-
tients, finding a kidney is difficult [10]. Roughly 17% of the adult
patients on the waiting list for deceased donor kidneys are highly-
sensitized [7]. Recently, an allocation policy was designed for de-
ceased donors that balances fairness and efficiency while working
within the currently fielded priority-based framework [4].

Complementing deceased donation is kidney exchange, which
allows patients with willing but medically incompatible living donors
to swap donors with other patients. The percentage of highly-
sensitized patients in fielded kidney exchanges is quite high; over
60% of the United Network for Organ Sharing (UNOS) nationwide
kidney exchange is highly-sensitized, as shown in Figure 1.

Currently fielded kidney exchanges tend to match using utilitar-
ian or near-utilitarian rules. Intuitively, maximizing social welfare
may come at the cost of marginalizing highly-sensitized patients.
Bertsimas, Farias, and Trichakis [3] introduced a general measure
of this cost as the price of fairness—the relative loss in total wel-
fare from using a “fair” objective (in our case, a “fair” matching
rule), instead of an overall utility-maximizing one. A recent pa-
per by Dickerson, Proccacia, and Sandholm [6] adapts this concept
to kidney exchange, finding that the theoretical price of fairness
(with respect to highly-sensitized patients) in kidney exchange is
low. They then formalize two natural “fair” utility functions and
show how to optimize either of these functions in two models of
kidney exchange. They find that, empirically, the price of fairness
is frequently high on real data.
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Figure 1: Composition of the UNOS national kidney exchange
from inception. For each of 94 match runs (x-axis), the raw
number of highly-sensitized patients, non-highly-sensitized pa-
tients, and altruists are plotted (left y-axis), as well as the per-
centage of patients who are highly-sensitized as a percentage of
the pool size (right y-axis).

In this paper, we extend their work by explicitly comparing the
impact of fairness constraints on match efficiency in either of two
models of kidney exchange. One is deterministic, where a matched
edge certainly results in a transplant; the other is failure-aware,
where a matched edge may fail before transplantation. Under util-
itarian matching rules, the failure-aware model will result in more
transplants in expectation in both theory and practice [5]. How-
ever, we show that failure-aware matching results in more expected
transplants than maximum cardinality matching, even when strict
fairness constraints are enforced. We conclude that there is a huge
“price of using the wrong model” that is potentially more harmful
to all patients than ignorance of fairness constraints.

2. PRELIMINARIES
In this section, we briefly overview the standard graph-based

model of kidney exchange and discuss two optimization models—
deterministic and failure-aware—adapted in Dickerson, Procaccia,
and Sandholm [6] to include fairness constraints.

2.1 Kidney Exchange Model
The standard model for kidney exchange encodes an n-patient

kidney exchange as a directed compatibility graph G = (V,E) by
constructing one vertex for each patient-donor pair. An edge e from
vi to vj is added if the patient in vj is compatible with the donor
kidney of vi. A donor is willing to give her kidney if and only if



the patient in her vertex vi receives a kidney. The weight we of an
edge e represents the utility to vj of obtaining vi’s donor kidney.

A cycle c in the graph G represents a possible kidney swap,
where each vertex in c obtains the kidney of the previous vertex.
In fielded kidney exchange, cycles of length at most only some
small constant L are allowed. In most fielded kidney exchanges,
including the UNOS kidney exchange, L = 3 (i.e., only 2- and
3-cycles are allowed). Fielded kidney exchanges also gain great
utility through the use of chains. Chains start with an altruistic
donor donating his kidney to a patient, whose paired donor donates
her kidney to another patient, and so on.

A matchingM is a collection of vertex-disjoint cycles and chains
in the graphG. Given the set of all legal matchings M, the clearing
problem in kidney exchange is to find a matching M∗ that maxi-
mizes some utility function u : M → R. Formally:

M∗ = argmax
M∈M

u(M)

In fielded kidney exchanges, one typically finds the maximum
weighted cycle cover (i.e., u(M) =

∑
c∈M

∑
e∈c we). This util-

itarian objective can favor certain classes of patient-donor pairs
while marginalizing others.

2.2 Weighted Fairness in Kidney Exchange
One simple method to emphasize a certain class of patient-donor

pairs—for us, those in the set of highly-sensitized vertices VH—is
to increase the weight of edges with a sink in VH . This definition
generalizes the policy UNOS currently applies to highly-sensitized
patients in their fielded kidney exchange.

Building on the standard (deterministic or probabilistic) kidney
exchange integer programming formulation, we rewrite the objec-
tive as follows:

max
∑
c v∆(c)xc

Here, v∆(c) is the value of a cycle or chain c (either in the deter-
ministic or probabilistic model) such that the weight of each edge
e ∈ c is adjusted by some re-weighting function ∆ : E → R.

A simple example re-weighting function is multiplicative:

∆β(e) =

{
(1 + β)we if e ends in VH

we otherwise

Intuitively, for some β > 0, this function scales the weight of edges
ending in highly-sensitized vertices by (1 + β). For example, if
β = 0.5, then the optimization algorithm will value edges that
result in a highly-sensitized patient receiving a transplant at 50%
above their initial weight (possibly scaled by other factors like fail-
ure probability and chain position, as in the probabilistic model).

For any M ∈ M, let M ′ be the matching such that every cycle
c ∈ M has augmented weight v∆(c). Then define the weighted
fairness rule u∆ in terms of the utilitarian rule u applied to the
augmented matching M ′, such that u∆(M) = u(M ′).

3. EXPERIMENTAL RESULTS
In this section, we compare failure-aware matching against de-

terministic matching. Our metric is the expected number of trans-
plants. We draw from real match runs and simulated UNOS data [9]
(see [5] for a derivation of failure rates).1 We also draw from ag-
gregate failure rates published by the Alliance for Paired Donation
(APD) [1]. Our experiments unilaterally support the hypothesis
that failure-aware matching, even with strict fairness constraints
implemented, results in more actual transplants than even fully util-
itarian deterministic matching.
1Please get in touch for data. All code is available at https:
//github.com/JohnDickerson/KidneyExchange.

3.1 Constant Failure Probability
We begin by assuming every edge fails with the same constant

probability. For example, a failure probability of 0.2 in the figures
below corresponds to a compatibility graph in which every edge in
an algorithmic match will fail 20% of the time and succeed 80%
of the time. This assumption, while not likely to hold in practice,
is easily parameterized and allows us to explore the differences in
models as matchings become less reliable.

Figure 2 compares the weighted fairness rule u∆ applied to the
failure-aware model—which takes edge failure into account during
the optimization process—against the utilitarian rule u applied to
the deterministic model, which computes a maximum cardinality
disjoint cycle cover without regard for edge failure. The efficient
failure-aware matching always results in at least as many (typically
more) expected transplants as the efficient deterministic matching;
however, of interest, even matchings under the fair rule u∆ in the
failure-aware model often result in significant overall gains when
compared to the utilitarian deterministic matching.
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Figure 2: Percentage change in the expected number of trans-
plants for actual UNOS match runs when using failure-aware
matching—possibly with fairness constraints—instead of max-
imum cardinality matching. The x-axis varies the constant edge
failure probability from 0 to 1.

For example, for β = 1.0—that is, when highly-sensitized pa-
tients are valued at twice that of lowly-sensitized patients—we see
a drop of only a couple of percentage points of expected transplants
when there is no probability of edge failure. When the probability
of edge failure is at least 20%, this fairer failure-aware matching
beats the efficient deterministic matching. In fact, when the prob-
ability of edge failure is at least 40%, valuing highly-sensitized
transplants at 11x (β = 10.0) that of a lowly-sensitized patient
results in more expected transplants overall than the “unfair” deter-
ministic matching! This general behavior is supported in Figure 3,
which performs the same experiments on generated data that mim-
ics the UNOS distribution, for pools of size 50 and 250.

3.2 Bimodal Failure Probability
In reality, not all potential transplants are created equal. There is

evidence that matches to highly-sensitized patients are more likely
to fail than matches to lowly-sensitized patients [1, 5]. In this
section, we perform similar experiments to Section 3.1, only now
drawing edge failure probabilities from such a bimodal distribution.

https://github.com/JohnDickerson/KidneyExchange
https://github.com/JohnDickerson/KidneyExchange
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Figure 3: Percentage change in the expected number of trans-
plants for generated UNOS match runs when using failure-
aware matching—possibly with fairness constraints—instead
of maximum cardinality matching. The x-axis varies the con-
stant edge failure probability from 0 to 1.

We draw from failure rates estimated from the UNOS exchange [9]
and from from aggregate failure rates published by the APD [1].
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Figure 4: Change in the expected number of transplants on
average for actual (top row) and generated (bottom row) UNOS
match runs when using failure-aware matching instead of max-
imum cardinality matching, assuming bimodal edge failure
rates derived from UNOS (left column) and APD (right col-
umn). The x-axis varies the β fairness factor applied to the
failure-aware matching algorithm.

Figure 4 compares the expected number of transplants resulting
from a match under u∆ for increasing values of β ∈ {0, 1, . . . , 10}
against a baseline number of transplants from the efficient deter-
ministic matching under u (shown as a thick horizontal line on the
plots). Again, we see that even applying fairly strict fairness bumps
to hard-to-match patients still results in significant overall gains in
expected transplants under the failure-aware model when compared
to a utilitarian maximum cardinality matching.

4. DISCUSSION
Balancing efficiency and equity in general allocation of resources

in healthcare, not just kidney exchange, is a contentious issue. For-
mally, full resolution of the issue has proven itself to be difficult
(if not impossible) across the board; however, recent progress has
been made in areas like deceased donor kidney and liver allocation.

We believe similar progress can and should be made in kidney ex-
change, and that this work can be formalized mathematically in
adapted models of kidney exchange.

While the price of fairness in kidney exchange within a model
can be quite high for strict definitions of “fairness”, we showed that
there is often an even higher price paid for optimizing in the wrong
model, regardless of fairness. In this paper, we considered the loss
in expected transplants from using an efficient deterministic model
against both efficient and various versions of “fair” failure-aware
matching. However, future work should consider other aspects of
real kidney exchange that are not presently modeled in fielded ex-
changes, like dynamic matching and game-theoretic considerations
from the viewpoint of participating hospitals and other legal en-
tities. Some research has been done in this area already, but has
primarily focused on utilitarian and not fair matching rules.

Moving forward, the kidney exchange community would bene-
fit immensely from combined approaches to handling not just dy-
namic matching, match failures, and fairness in the optimization
problem, but also game-theoretic and legal considerations in the
design of the matching mechanism itself. Our research group plans
to draw on work from the operations research and economics liter-
ature to move in this direction: for example, Hooker and Williams
present a general methodology for balancing a particular form of
fairness (that we feel would not be the criterion of choice in kid-
ney exchange) and efficiency [8]; Bertsimas, Farias, and Trichakis
formalized a proposal for balancing fairness and efficiency in de-
ceased kidney allocation [4]; and Ashlagi, Jaillet, and Manshadi
theoretically address dynamic exchange in a reduced model [2]. A
general parameterized model of kidney exchange will increase the
efficacy of fielded exchange and aid in the widespread adoption of
new exchanges in differing legal and political environments.
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