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1 Introduction

The ability to reason about the past, present, or future state of the world is widely
applicable to many fields. Additionally, considering uncertainty over the precise
time at which events occurred or will occur increases realism, but also increases
theoretical and computational intractability. This sort of probabilistic temporal
reasoning is important in domains like those listed below.1

1. The advent of the Internet has clearly affected traders’ reasoning about past and
future movements in the stock market. For example, Fujiwara et al. [7] and De
Choudhury et al. [5] discuss how stories in newspapers, blogs, and miscellaneous
websites move prices in the stock market. A variety of data mining and machine
learning techniques are used by investment banks and hedge fund managers to
predict future stock movements based on past patterns in the values of various
indicators. Formally, an investor could learn rules like, “the probability that the

1These examples and others are discussed in depth in work by Dekhtyar et al. [6] and Shakarian
et al. [18, 19]. We omit some discussion due to space; for more information, see these articles.
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stock of IBM will rise by at least 3 % at time .tC�/ is 90 % given that, at time t ,
early coverage from blogs is positive about an upcoming earnings call and, also
at time t , IBM does not announce fresh layoffs.” The processes required to collect
this data are outside the scope of this chapter, but a large financial institution has
the resources to scrape web and print sources from which such rules could be
learned.

2. Advances in both electronic record keeping and large-scale data analysis have
introduced the “big data” mentality into medicine. For example, the Dartmouth
Atlas of Health Care [22] aggregates US health care data across multiple dimen-
sions (time, location, socioeconomic status, gender, severity, etc.); however, like
other such large projects, it is largely sourced from billing data. Billing data alone
is both incomplete and inaccurate, so reasoning over such uncertain temporal
data is difficult. For instance, medical practitioners or policy analysts may wish
to write rules of the sort, “the probability that a patient will return to the hospital
before time .t C �/ is 10 % if the patient was not in the ICU at time t and the
patient’s visit lasted less than 1 hour.”

3. Large-scale data collection regarding environmental phenomena has resulted
in a deluge of noisy, temporal data available to the public. For example, a
government warning agency may wish to announce that, “if a forest fire occurs
at time t and the amount of rain at time t is less than 0:1cm, then the probability
that the fire will continue at time .t C�/ is at least 85 %.”

4. The Minorities at Risk research project [23] monitors the conflicts and activities
of minority ethnicities, religious sects, and terrorist groups around the world.
Our group at the University of Maryland has worked extensively with this data,
and published analyses of some of these groups’ behaviors (e.g., Hezbollah [10]
and Hamas [11]). We built the SOMA Terror Organization Portal [14], which has
registered users from over 12 US government agencies and contains thousands
of (automatically) extracted rules about various groups’ behaviors. Analysts
engaged in counter-terrorism efforts need to be able to reason with such rules
and make appropriate forecasts; in separate work, we have also done extensive
work on making such forecasts [13, 15]. In this chapter, we formulate a running
example in the context of the terrorist group Lashkar-e-Taiba.

In this chapter, we discuss two related types of logic programs that allow for
logical reasoning in situations that involve temporal uncertainty. In Sect. 2, we
first discuss temporal probabilistic logic programs (TPLPs), originally formulated
by Dekhtyar et al. [6] as an extension to the generalized annotated programs
(GAPs) of Kifer and Subrahmanian [9]. TPLPs allow for reasoning about point
probabilities over time intervals using temporal probabilistic rules (tp-rules). In
Sect. 3, we present an algorithm for automatically learning tp-rules from data, as
detailed in [20]. We are also present a method for making policy recommendations
by employing standard integer programming techniques to the automatically learned
rules. Then, in Sect. 4, we describe a large-scale system we recently built to analyze
terror groups using tp-rules. Using this system, we automatically learn rules about
the south Asian terrorist group Lashkar-e-Taiba. In Sect. 5, we conclude with a
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discussion of future research directions, including an adaptation of our architecture
to the recently introduced annotated temporal probabilistic (APT) logic programs,
an extension to TPLPs that does not make independence assumptions about the
underlying features and allow for reasoning over probability intervals over time
periods, rather than just point probabilities.

2 Modeling Group Behavior with Temporal Probabilistic
Logic Programs

Temporal probabilistic logic programs (TPLPs) were first introduced by Dekhtyar
et al. in [6]. The system provides a framework within which a logic programmer can
express tp-rules of the form “If some condition is true, then some atom is also true
at some time/time interval with some probability distribution over the points in the
time interval.” Dekhtyar et al. [6] also provided a syntax and semantics for temporal
probabilistic logic programs, as well as initial complexity results. In this section, we
overview TPLPs and tp-rules in the context of modeling group behavior.

2.1 Database Schema for a Group’s Past Behavior

Before defining the general temporal probabilistic logic, we introduce a running
example that focuses on Lashkar-e-Taiba (LeT), a well-known, active South Asian
terrorist group. The example uses real data collected by the Computational Model-
ing of Terrorism (CMOT) codebook [17], a research project that records past and
current activities of multiple terrorist groups including LeT.

We view the data as a single relation consisting of tuples with two types of
attributes: environmental and action. Environmental attributes correspond to aspects
of the environment in which the group operated, while action attributes correspond
to the various types of actions taken by a group, along with their intensities.
Each tuple corresponds to the set of these attributes’ values for a given a month.
Example 1 gives a very small subset of the raw data collected on LeT.

Example 1. The table below shows four attributes of CMOT data collected for
Lashkar-e-Taiba across 12 months in 2004.

The first column is a date labeling each tuple. The next column corresponds to the
action attribute attackCiv, a binary variable that is activated if LeT both attacked
civilians during a given month and that attack resulted in casualties.2

2The CMOT codebook tracks fine-grained aspects of violent group behavior. Other civilian attack-
related attributes include attacks on civilian transportation, attacks on civilians without civilian
casualties, and attacks specifically targeting civilian minorities.
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Date AttackCiv Religious Raided PersonnelKilledJK

Jan 2004 1 1 0 13
Feb 2004 0 1 1 23
Mar 2004 0 1 0 10
Apr 2004 0 1 0 8
May 2004 0 1 0 15
Jun 2004 0 1 0 7
Jul 2004 0 1 0 14
Aug 2004 0 1 0 13
Sep 2004 0 1 0 11
Oct 2004 0 1 0 25
Nov 2004 0 1 0 16
Dec 2004 0 1 1 9

The next three columns correspond to environmental attributes. The attribute
religious is set to 1 if LeT operated as a religious organization during a
specific month. We see that LeT operated as a religious organization during every
month of 2004. The attribute raided is a binary variable that is set to 1 if
the government of a host country raided LeT during a specific month. The data
shows that this occurred in February and December of 2004. Finally, the last
column, personnelKilledJK, is an integral variable that takes nonnegative
values corresponding to how many members of Lashkar-e-Taiba were killed in the
northernmost Indian state of Jammu and Kashmir.

Example 1 considers a subset of the database where each attribute has a value
for each time period. This need not be the case; attribute values can be left unset if
they are unknown. For instance, the CMOT database considers group behavior over
many decades; data on some attributes may no longer be available (e.g., pertaining
to the number of kidnappings that occurred, or whether or not LeT actively lobbied
the government of Pakistan).

We will now define the formal syntax for temporal probabilistic logic, through
which we will be able to learn tp-rules with which we can reason about a group’s
past and future behavior.

2.2 Syntax

We assume the existence of a first order logical language with finite set Lcons of
constant symbols, finite set Lpred of predicate symbols, and infinite set Lvar of
variable symbols. Each predicate symbol p 2 Lpred has an arity (denoted arity(p)).
A (ground) term is any member of Lcons [ Lvar (resp. Lcons); if t1; : : : ; tn are
(ground) terms, and p 2 Lpred, then p.t1; : : : ; tn/ is a (ground) atom.

In the context of the behavioral data discussed in Sect. 2.1, every attribute
corresponds to a predicate symbol. In fact, each attribute in the example (and, in
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fact, the entire CMOT codebook) represents a unary predicate symbol. Although
our formalization is easily generalized, we will thus concentrate only on predicates
p such that arity.p/ D 1. Let p be the predicate corresponding to an attribute, and
t a term in the domain of p. Then p.t/ is an action atom when p corresponds
to an action attribute, and an environmental atom when p corresponds to an
environmental attribute. Finally, if X 2 Lvar and Y 2 Lcons, then X D Y , X < Y ,
X > Y , X � Y , and X � Y are called comparison atoms.

Example 2. In this example, we use the table of data shown in Example 1. In this
table, attackCiv is an action attribute with domain 0 and 1. In January 2004,
Lashkar-e-Taiba’s attacks on civilians resulted in civilian casualties; we represent
this using the ground atom attackCiv.1/. Similarly, personnelKilledJK is
an environmental attribute whose domain is the non-negative integers. If X 2 Lvar

ranges over the non-negative integers, then personnelKilledJK.X/ can be
instantiated to represent any number of LeT personnel killed in Jammu and Kashmir.
For example, in January 2004, we instantiate X D 13 to return the ground atom
personnelKilledJK.13/.

We now formally introduce the concept of time. Let T D f1; : : : ; �maxg denote the
entire set of time points in which we are interested. We require a fixed time window
size ranging over T , but allow �max to be arbitrarily large. The user may choose
both the granularity of T and �max in an application-specific way. For instance, in
the stock market example given in Sect. 1, a user may be interested in reasoning
about 15-min segments (when the market is open) over the course of 10 years, and
would set �max to around 78; 000 to represent 30 periods per day over roughly 2,600
trading days. On the other hand, our terrorism application does not require such a
fine-grained temporal resolution. The CMOT codebook records data on the order of
months, so we use a tmax of approximately 240 to reflect an interest in events over
the past 20 years.

Given time period � 2 T and probability � 2 Œ0; 1�, we call Œ�; �� a temporal-
probabilistic annotation (or tp-annotation). Intuitively, a tp-annotation Œ�; �� refers
to some unspecified event occuring exactly � time periods after a given time, with a
probability of �.

We now syntactically connect time to our fledgling logic. Given a tp-annotation
Œ�; �� and an action (environmental) atom p.t/, we call p.t/ W Œ�; �� an action
(environmental) tp-annotated atom. If p.t/ is ground then p.t/ W Œ�; �� is called
ground as well. Intuitively, p.t/ W Œ�; �� says that p.t/ will occur with probability �

exactly � time intervals after some fixed time. Example 3 gives sample tp-annotated
atoms in the context of our running example.

Example 3. The action tp-annotated atom attackCiv.1/ W Œ3; 0:9� states that
there is a 90 % chance of Lashkar-e-Taiba carrying out deadly attacks against
civilians in 3 time units after some fixed time. The environmental tp-annotated
atom personnelKilledJK.4/ W Œ1; 0:5� states that there is a 50 % chance that
personnel belonging to Lashkar-e-Taiba will be killed in Jammu and Kashmir in 1
time unit after some fixed time.
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We are now ready to introduce the main basic reasoning tool used in our analysis.

Definition 1 (Temporal probabilistic rule). If p.t/ W Œ�; �� is a tp-annotated atom
and A1; A2; : : : ; An are atoms (or comparison atoms), then

p.t/ W Œ�; �� A1 ^ A2 ^ : : : ^An

is a temporal-probabilistic rule (tp-rule). The head of the rule is p.t/, and the body
of the rule is A1 ^A2 ^ : : : ^ An.

Intuitively, such a tp-rule r states that if each atom in body.r/ is true at a
fixed time, then the head.r/ atom will be true with probability � at a time � units
afterward.

Definition 2 (Temporal probabilistic logic program). A temporal probabilistic
logic program (TPLP) is a finite set of tp-rules.

Example 4 presents a small TPLP consisting of a subset of tp-rules learned about
LeT from real data.

Example 4. The following tp-rules, fr1; : : : ; r9g, form a small TPLP that focuses on
the attack patterns of LeT. These rules were learned from the full set of CMOT data
available for LeT (of which Example 1 displays a small subset).

r1:attackCiv.1/ W Œ1; 1:0�  religious.1/ ^ leadersDied.X/ ^X � 2:

r2:attackHin.1/ W Œ3; 0:909�  terrClaims.0/ ^ leadersDied.X/^X � 2:

r3:attackCiv.1/ W Œ1; 1:0�  religious.1/ ^ raided.X/ ^X � 12:

r4:attackSym.0/ W Œ3; 0:909�  locIndia.1/^ leadersDied.X/^X � 5:

r5:attackSym.0/ W Œ2; 0:976�  locIndia.1/^ leadersDied.X/^X � 4:

r6:attackSym.0/ W Œ3; 0:909�  locIndia.1/^ personnelRel.X/ ^X � 9:

r7:attackHol.1/ W Œ2; 0:917�  remInfluenceJK.1/^ personnelKilled.X/

^X � 8:

r8:attackHol.1/ W Œ2; 0:909�  personnelArrested.X/^X � 8:

r9:attackHol.1/ W Œ2; 0:917�  advChangeLife.1/ ^ personnelKilled.X/

^X � 8:

Temporal probabilistic rule r1 states that, at time t , if Lashkar-e-Taiba is operating as
a religious group and the number of group leaders who died during this time interval
is at most 2, then with 100 % probability LeT will perform deadly attacks against
civilians at time t C1. The environmental atom religious.1/ ensures that, when
body.r1/ is true, LeT is operating as a religious group. Similarly, the environmental
atom leadersDied.X/ and the comparison atom X � 2 combine to ensure that,
when body.r1/ is true, at most two leaders of LeT died during this time interval.
Finally, head.r1/ is an action atom stating that LeT performs deadly attacks against
civilians when body.r1/ is true.

As another example, rule r6 states that with 90.9 % probability, LeT will not
attack symbolic sites at time t C 3 if at time t LeT has active locations across the
border of India and at most 10 LeT personnel were released by the government
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during the time interval t . Unlike rule r1, rule r6 states that LeT will not perform an
attack (with high probability); this is specified in head.r6/, where the ground term
serving as an argument for predicate attackSym has value 0 instead of 1.

While the examples above focus primarily on describing the attack patterns of
a terrorist group, we emphasize that this temporal probabilistic logic can easily
be used in other domains. Regardless of the domain, it is clear that manually
determining tp-rules and TPLPs from historical data or expert opinions would
quickly grow intractable. In the next section, we present a method to learn tp-rules
automatically from historical data, as well as a general method for extracting policy
recommendations (e.g., “reduce funding to LeT” or “sell stock in APPL but buy
stock in GOOG”) from these learned tp-rules.

3 Automatically Learning Rules from Historical Data

In Sect. 2, we formally introduced temporal probabilistic rules (tp-rules) and
temporal probabilistic logic programs (TPLPs). In this section, we present a general
method for automatically learning tp-rules from historical data. We then describe
an integer programming-based method to derive “good” policy recommendations
based on these learned tp-rules.

3.1 Automatic Extraction of TP-Rules

Temporal probabilistic reasoning is important in many domains (see Sect. 1), and tp-
rules are one natural way for analysts and reasoning agents to formally write down
their expert knowledge. However, manually constructing tp-rules from historical
data is tedious in the small, infeasible in the large, and subject to human error and
bias. For these reasons, it is necessary to remove the human from the tp-rule creation
process in favor of automatically learning tp-rules from historical data.

3.1.1 SOMA Rules

Our method for learning tp-rules from historical data is heavily based on one by
Subrahmanian and Ernst [20]. This algorithm was originally motivated by the need
to mathematically model the behavior of terrorist groups, and operates on the first
(to our knowledge) model used toward this end. The algorithm uses Stochastic
Opponent Modeling Agent rules (SOMA-rules), which provide probabilistic but
not temporal reasoning about a group. In fact, SOMA-rules are syntactically very
similar (although they do not consider time) to the tp-rules discussed in this chapter,
making statements of the form, “When conditions C are true in the environment
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in which a terror group G operates, there is a probability of between l % and u %
that G will take actions A at some intensity level L.” We formalize this notion in
Definition 3.

Definition 3 (SOMA-rule). If A1; A2; : : : ; An are environmental or comparison
atoms, p.t/ is an action atom, and l; u 2 Œ0; 1�, then

p.t/ W Œl; u� A1 ^A2 ^ : : : ^ An

is a SOMA-rule. As with tp-rules, the head of the rule is p.t/, and the body of the
rule is A1 ^ A2 ^ : : : ^An.

Recently, SOMA-rules have been used to formally present the behaviors of
many terrorist groups. In the past 5 years, work by Mannes, Subrahmanian, and
others has automatically learned expressed SOMA-rules about Hezbollah [10],
Hamas [11], and Lashkar-e-Taiba [12]. These projects accessed historical data about
their respective terrorist groups through the CMOT codebook, and have shown
confirmed predictive power. For example, the work by Mannes et al. [10] covering
Hezbollah made predictions about the group’s behavior in early 2009 before the
Lebanese elections. Hezbollah then made public comments in the Beirut Daily
Star expressing skepticism about the predictions; however, the group proceeded to
operate exactly as predicted in early 2009.

Formally, SOMA-rules use a constrained version of the syntax of probabilistic
logic programs [16]. However, for the purposes of this section, we can think of
SOMA-rules as tp-rules with no temporal offset and a point probability; that is,
the tp-annotation Œ�; �� will always have � D 0, and the corresponding SOMA-
annotation Œl; u� will always have l D u. Intuitively, the non-trivial temporal offsets
of tp-rules can be thought of as adding a notion of causality to SOMA-rules. This
is accomplished by clearly separating the time interval during which the body of a
tp-rule takes place (i.e., interval t) and the time interval during which the head of a
tp-rule files (i.e., interval t C �).

We are now ready to present the algorithm by Subrahmanian and Ernst [20],
as well as our straightforward augmentation to allow the algorithm to work with
temporally-aware TPLPs.

3.1.2 Subrahmanian-Ernst Algorithm: Preliminaries

We now describe a method for automatically extracting SOMA-rules from a
database, first proposed by Subrahmanian and Ernst [20]. We call this the
Subrahmanian-Ernst (SE) algorithm. Afterward, we describe the small tweak
required to adapt the method to extract tp-rules.

Definition 4 (Bi-conjunct). If p is a predicate, X 2 Lvar, and l; u 2 Lcons, then

p.X/ ^ l � X � u

is a bi-conjunct.
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The SE algorithm generates a specific type of SOMA-rules whose bodies consist
of bi-conjuncts. We formally define these bi-SOMA-rules in Definition 5.

Definition 5 (Bi-SOMA-rule). If B1; B2; : : : ; Bn are bi-conjuncts, p.t/ is an ac-
tion atom, and l; u 2 Œ0; 1�, then

p.t/ W Œl; u� B1 ^ B2 ^ : : : ^ Bn

is a bi-SOMA-rule. As with standard SOMA-rules, the head of the rule is p.t/. The
bi-body of the rule is B1 ^B2 ^ : : :^Bn. The dimension of a bi-body is the number
of bi-conjuncts in it.

Clearly, the set of all bi-SOMA-rules is a subset of the set of all SOMA-rules,
as the definition is identical to that of the SOMA rule with the added constraint of
a specific combination of environmental and comparison atoms in the body of the
rule. We now induce equivalence classes on the set of all bi-bodies of bi-SOMA-
rules.

Definition 6 (Equivalence of bi-bodies). If r1 and r2 are bi-SOMA-rules with bi-
bodies b1 and b2, then b1 and b2 are equivalent if and only if:

• The bi-conjuncts in bi-bodies b1 and b2 always co-occurred (i.e., the set of time
intervals in which b1 is true is identical to the corresponding set of time intervals
for b2); and

• The environmental atoms in both bi-bodies are identical (but not necessarily their
respective comparison atoms).

The SE algorithm requires a tight canonical member from each equivalence class.
Informally, if B� D fB1; B2; : : : ; Bng is an equivalence class such that Bi contains
some bi-conjunct p.X/ ^ li � X � ui , then the tight canonical member chosen
must contain the bi-conjunct:

p.X/ ^ min
iD1;:::;n

.li / � X � max
iD1;:::;n

.ui /

The tight canonical member must contain similar “tight” (with respect to the
equivalence class B�) bi-conjuncts for each unique environmental atom in the bi-
bodies B1; : : : ; Bn.

Example 5. The bi-bodies B1, B2, and B3 each have two bi-conjuncts (and thus
dimension.Bi / D 2). Each bi-body references two environmental attributes, the
binary-valued religious and nonnegative integral-valued leadersDied.

B1: Œreligious.X1/^ 0 � X1 � 1� ^ ŒleadersDied.X2/^ 0 � X2 � 2�

B2: Œreligious.X1/^ 1 � X1 � 1� ^ ŒleadersDied.X2/^ 0 � X2 � 6�

B3: Œreligious.X1/^ 0 � X1 � 1� ^ ŒleadersDied.X2/^ 1 � X2 � 12�

Assume the bi-conjuncts in each bi-body always co-occurred. Since each bi-body
contains the same environmental atoms (although their respective comparison atoms



254 J.P. Dickerson et al.

are different), they are also in the same equivalence class B . Then a tight canonical
member of B� is Bt , as shown below.

Bt : Œreligious.X1/^ 0 � X1 � 1� ^ ŒleadersDied.X2/^ 0 � X2 � 12�

To aid in reasoning over tight canonical members of equivalence classes, the SE
algorithm also induces an ordering on bi-bodies, formalized in Definition 7 below.

Definition 7 (Simpler than). If B1 and B2 are bi-bodies and p.t/ is an action atom,
then B1 is simpler than B2 (denoted B1 � B2) if:

• dimension.B1/ � dimension.B2/,
• conf .B1/ � conf .B2/; and
• sup.B1/ � sup.B2/.

The confidence of bi-body Bi , conf .Bi /, with respect to the action atom of interest
p.t/ is defined as follows:

conf .Bi / D #intervals when Bi was true and p.t/was true

#intervals when Bi was true

The support, sup.Bi /, is just the numerator of the conf .Bi / fraction.

We now define the structure computed as the end goal of the SE algorithm.

Definition 8 (Up-set). If B is a bi-body and d is a positive integer, then the up-set
of B (denoted up.B/) is:

up.B/ D ˚
B 0 jB 0isatightbi� body ^ dimension.B 0/ � d ^ B 0 � B

�

Intuitively, given some bi-body B and a maximum dimension d , the up-set of B
is the set of all bi-bodies of dimension at most d that are also simpler than B . The
SE algorithm computes layers of sets of bi-bodies based on these up-sets as follows:

Definition 9 (Tp " k). If d is a positive integer, then 8k 2 Z
C we define Tp " k

iteratively as follows:

Tp " 1 D fB jBisatightbi� body ^ dimension.B/ � d ^ up.B/ D ;g
Tp " .k C 1/ D fB jBisatightbi� body ^ dimension.B/

� d ^ up.B/ � Tp " kg
The set Tp " 1 is then the set of all bi-bodies B with d or fewer bi-conjuncts in

the body, such that no other bi-body B 0 with d or fewer bi-conjuncts in the body
is strictly simpler than B . The subsequent Tp " i for i > 1 are “looser” versions
of each parent set. The computation of these sets is the main purpose of the SE
algorithm; however, naı̈vely computing all such sets (up to some constant integer k)
would be intractable. To this end, we define the workhorse of the SE algorithm, the
condition graph (COG).
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Definition 10 (Condition graph). A condition graph (COG) is a graph G D
.V; E/ such that 8v 2 V :

• v:bibody is a label referencing a single, tight bi-body
• v:level is a label that is set to 0 if there is no vertex v0 such that 9.v0; v/ 2 E;

otherwise, it is defined as maxv0inV;v¤v level.v0/C 1 j .v0; v/ 2 E .

Let K 2 Z
C represent the maximum desired level of a COG. Then, for each

bi-body B 2 TP " K , there is exactly one vertex v 2 V such that v:bibody D B .
This completely defines the set V .

The set E is defined as follows:

E D f.v; v0/ j v; v0 2 V ^
.v:bibody� v0:bibody/ ^
6 9w 2 V s:t:.v:bibody� w:bibody� v0:bibody/g

Building the complete COG is a computationally difficult problem. To alleviate
some of the computational complexity, the SE algorithm takes as a parameter a
user-defined outcome (in our terror group example, an action atom) of interest, and
computes only the portion of the COG relevant to that outcome. This is done by
determining if a given bi-body references the outcome and, if it does not, ignoring
it. Once this outcome-specific version of the COG is fully constructed, we need
only extract the vertices from the COG that fall within the desired (user-specified)
confidence and support intervals. We describe this process formally in the next
section.

3.1.3 The Subrahmanian-Ernst Algorithm and an Adaptation to TPLPs

In this section, we formally describe the Subrahmanian-Ernst (SE) algorithm. We
also adapt the algorithm to the temporal probabilistic logic presented in Sect. 2.
This section builds on the formalizations of Sect. 3.1.2.

Algorithm 1 formally presents the Subrahmanian-Ernst algorithm. The algorithm
takes as input:

• A database (DB) whose schema mirrors that discussed in Sect. 2.1. In the case of
our running LeT example, this is a database whose rows correspond to months
and columns correspond to action and environmental attributes.

• A list of environmental attributes (ENV). In the case of the LeT example, this is
just the indices of the columns corresponding to environmental attributes.

• A positive integer d , the maximum dimension of a bi-body. For example, if
d D 3, then all bi-bodies computed by the algorithm will have dimension at
most 3.

• A positive integer k, determining the maximum level a vertex in the COG can
attain.
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Algorithm 1: Subrahmanian-Ernst algorithm
Data: Database DB, environmental attributes ENV, action atom Outcome, maximum

dimension d 2 Z
C, maximum level k 2 Z

C

Result: Set of bi-bodies relevant to Outcome that satisfy pre-defined support and confidence
levels

begin
Set COGD .V; E/ with V D E D ;
foreach combination � of d or fewer attributes in ENV do

SatTuples = BuildDataStructure.DB; ENV; �; Outcome/

NotSatTuples = BuildDataStructure.DB; ENV; �;:Outcome/

TightBibodies = GenerateTightBibodies.�; SatTuples/
foreach vertex v 2 TightBibodies do

numNotSat = CountQuery.v:bibody; NotSatTuples/
v:confidence D v:support=.v:support C numNotSat/
COG = InsertCOG.v; COG; k/

end
end
return ExtractBibody(COG)

end

Algorithm 1 references five undefined procedures. We describe them here.

BuildDataStructure. Informally, this procedure splits the DB into two subsets
of rows: those satisfying an outcome and those not satisfying an outcome. In
the algorithm, after calling BuildDataStructure with “Outcome” as a parameter,
the “SatTuples” variable contains the projection of DB on attributes in the
combination � for specific tuples that satisfy the user-defined outcome atom.
The “NotSatTuples” variable then contains the projection that do not satisfy
the outcome atom, since it is the product of calling BuildDataStructure with
“:Outcome”.

GenerateTightBibodies. This procedure generates the support of all tight bi-
bodies associated with the combination �. A set of vertices corresponding to
these tight bi-bodies is returned, such that for each vertex the confidence, support,
and bibody fields are set properly.

CountQuery. This procedure counts the total number of tuples that satisfy the bi-
body of a specific vertex, but do not satisfy the user-specified outcome atom.

InsertCOG. This procedure is called once per vertex returned by the Gener-
ateTightBibodies procedure. The procedure first checks the level of the vertex
and, if the level is at most k, inserts the vertex into the COG. The procedure also
propagates the level value to neighbors of the vertex. If this cascade of updates
forces any vertex’s level to exceed k, the vertex is removed from the COG.

ExtractBibody. This procedure checks every vertex in the COG and, if the vertex
satisfies some user-defined confidence and support criteria (e.g., “only report
bi-bodies with support above 10 and confidence above 90 %”), reports the
corresponding bi-body. The set of all such bi-bodies is then returned by the
algorithm.
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Algorithm 2: OffsetDB algorithm
Data: Database DB, temporal offset � 2 Z

Result: Temporally-augmented database DB0

begin
Set DB0 D DB
foreach row ri in DB0 do

if i < � then
Delete ri from DB0

else
foreach environmental attribute E do

Let r 0

i�� be row i � � in the original database DB
Replace ri .E/ with r 0

i�� .E/

end
end

end
return DB0

end

As presented, Algorithm 1 does not take time offsets into account. In other words,
it will always return tp-rules that have a trivial temporal component. In Algorithm 2
(the OffsetDB algorithm), we provide a simple way to augment our database DB
such that the SE algorithm returns general tp-rules.

Informally, Algorithm 2 takes as input the raw database of historical data DB,
and outputs an augmented database DB0 such that each environmental attribute in
DB0 has been “pushed up” � rows. In this way, the temporal offset is built into the
database DB0. The SE algorithm is then called with DB0 as the data source, and
proceeds normally.

For a specific time offset � , by invoking the OffsetDB algorithm followed by
the SE algorithm once for every outcome of interest (e.g., for every action attribute
corresponding to LeT performing violent attacks), an analyst can derive all possible
tp-rules that satisfy specified support, confidence, and dimension levels for an offset
of � . Then, for all time offsets of interest (e.g., between 0 and 5 months), an analyst
can derive all possible tp-rules for any time offset.

3.2 Toward Converting TP-Rules into Policy Recommendations

The SE algorithm presented in Sect. 3.1.3 automatically learns expressed tp-rules
from historical data. These learned tp-rules can be analyzed manually by area
experts and used to determine policies of actions; however, as with the creation
of the tp-rules themselves, this is both intractable in the large and subject to both
human bias and mental capacity constraints. For instance, in our running example
focusing on attacks by Lashkar-e-Taiba, an immediately obvious policy for reducing
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attacks in one dimension might have unforeseen repercussions at different points of
time or with different types of attacks. In this section, we present a method for
automatically extracting desirable policies from a database of tp-rules. The method
makes a few assumptions that should be relaxed in future work; we discuss these as
well.

3.2.1 Computational Policies

Informally, a policy is a specific setting of a (subset of the) world that, when
present, triggers desirable properties elsewhere in the world. For example, in the
context of effecting change in a terrorist group’s behavior, a governing body or
advisory committee may be interested in understanding what changes it could make
to the environment in which a group operates (e.g., cutting down on foreign aid
or increasing raids) so that the group behaves differently (e.g., no longer attacks
civilians).

Before formally defining a policy in the language of our temporal probabilistic
logic, we discuss a fairly strong assumption: that the tp-rules over which we are
reasoning can be represented in propositional logic. That is, terms in the body of
each rule are all ground. The assumption that each body term is ground lets us view
the body of each rule, consisting of atoms A1 ^ A2 ^ : : : ^ An, as a conjunction of
literals. We can then reason about these literals and their negations in the standard
way. For example, religious, which has domain f0; 1g, can be viewed as two
complementary literals religious.1/ and religious.0/. In our experience
learning real tp-rules from data, this assumption is not too confining (in fact, as we
will discuss in Sect. 4, our recent study focusing on preventing attacks by Lashkar-
e-Taiba used only rules of this type). Future research will relax this requirement.

For the rest of this section, we will assume the existence of a set of tp-rules RDB
(called a rule database). This set of tp-rules could have been learned automatically
using techniques like those presented in Sect. 3.1 or constructed manually. Let
body.RDB/ be the set of all literals appearing in the body of any tp-rule in the
rule database RDB. Furthermore, let :body.RDB/ be the set of all literals f:` j ` 2
body.RDB/g. We now formally define a policy.

Definition 11 (Policy). Given a set of tp-rules RDB (called a rule database) and a
set of action atoms A, a policy that potentially eliminates A is a consistent subset of
:body.RDB/ that satisfies the following:

1. 8r 2 RDB such that head.r/ 2 A, 9` 2 P such that :` 2 body.r/

2. 6 9P 0 � P such that P 0 satisfies the preceding condition

Intuitively, given a database of tp-rules RDB and a set of action atoms that we
would like to prevent, a policy is a way to set environmental variables such that
no tp-rules pertaining to the specific set of action atoms fire. Furthermore, it is the
“simplest” such set in that no strict subset of the policy would result in none of
the desired tp-rules firing. Since, by definition, the policy is a consistent subset of
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:body.RDB/, it cannot contain both literals ` and :`; if this were not the case, it
would be impossible to implement the policy.

Example 6. The following set of tp-rules, fr1; r2; r3g, forms a small rule database
RDB that focuses on the attack patterns of LeT toward civilians.

r1:attackCiv.1/ W Œ1; 0:99�  terrClaims.0/^ religious.1/

r2:attackCiv.1/ W Œ3; 0:909�  terrClaims.0/

r3:attackCiv.1/ W Œ1; 0:916�  remInfluenceJK.1/ ^ advChangeLife.1/

Let A D fattackCiv.1/g, representing a desire to prevent LeT from attacking
civilians. There are two possible policies that potentially eliminate A:

• P1 D fterrClaims.1/;remInfluenceJK.0/g
• P2 D fterrClaims.1/;advChangeLife.0/g.
Clearly, any policy must include terrClaims.1/, since this is the only way to
prevent rule r2 from firing. This also prevents rule r1 from firing. Finally, we can
choose to negate either of the components in body.r3/. Thus, both P1 and P2 prevent
all rules r 2 RDB pertaining to the set of action atoms A from firing; furthermore,
no strict subset of either P1 or P2 satisfies this statement, and both P1 and P2 are
consistent, so both P1 and P2 are policies that potentially eliminate A.

3.2.2 Iteratively Computing All Policies

We now describe the computational method used to automatically generate policies
from a set of tp-rules. The algorithm we will describe builds upon integer linear
programming techniques for computing the set of all minimal models of logic
programs, originally discussed in Bell et al. [1]. We now explain its straightforward
adaptation to the case of temporal probabilistic logic.

First, we define a set of linear constraints (LC) that enforce the formal rules of
a policy, as defined above. Assume we have a tp-rule database RDB0 and a set of
action atoms A; for convenience, denote RDB D fr 2 RDB0 j head.r/ 2 Ag. For
each literal ` 2 body.RDB/, let X` be a binary variable representing whether or not
literal ` is included in a policy. Similarly, define binary variable Xa for each a 2 A.
Then we define the set of linear constraints LC as follows:

1. For each rule a `1 ^ `2 ^ : : : ^ `n, add a constraint

Xa C
nX

iD1

.1 � X`i / � 1

Intuitively, this constraint forces either the head of the rule (represented by Xa)
to be true, or at least one of the literals in the body to be false.

2. For each pair of complementary literals ` and :`, add a constraint
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Algorithm 3: Policy computation algorithm
Data: Database of tp-rules RDB, set of action atoms A

Result: Set of policies P

begin
P D ;
.RDB0; LC/ D MakeConstraints.RDB; A/

while true do
S D CalculateHS.RDB0; LC/

if S exists then
P D P [ f:` j ` 2 Sg
LC D LC [ ˚P

`2S X` � card.S/
�

else
return P;

end
end

end

X` CX:` � 1

This ensures consistency; that is, at most one of the complementary literals is
included in a policy.

3. For each rule r and a 2 A, if a 2 head.r/, add the constraint

Xa D 0

This ensures that no rule (of interest) fires.
4. Ensure that each Xa and X` variable is binary by adding a constraint

Xfa;`g 2 f0; 1g

The savvy reader will notice that we can combine the constraints in item 1 with
those in item 3, removing the need for the Xa variables ranging over the action
atoms in the heads of tp-rules entirely. We choose to present LC in a more general
way. In the event that LC is over-constrained (that is, there is no policy P such that
no tp-rule in the rule database fires), a policy analyst could relax the constraint in
item 3 and then try to minimize the number of tp-rules that fire (instead of requiring
that none fire at all).

Second, using this initial set of linear constraints LC, we iteratively solve a
series of integer programs (minimizing the number of activated X` variables),
adding constraints to LC until the program becomes infeasible. The solution to each
intermediary integer program represents a legal policy that potentially eliminates A,
given some set of action atoms A. Algorithm 3 formalizes this process.

Algorithm 3 makes use of two previously undefined functions:

MakeConstraints. Given a rule database and a set of action atoms, this returns the
initial set of linear constraints LC as defined earlier in the section, as well as a
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filtered rule database RDB0 containing only tp-rules pertinent to the set of action
atoms.

CalculateHS. This function calculates a minimum hitting set for the bodies of
the pertinent tp-rules in the filtered rule database RDB0, subject to the constraint
defined by LC. The minimum hitting set can be calculated using the linear integer
program:

min
P

`2body.RDB0/ X`

s:t: LC

Intuitively, Algorithm 3 iteratively produces minimum hitting sets consisting of a
literals in rule bodies such that, were those literals to be negated, no tp-rules (in the
filtered rule database RDB0) would fire. After each successful solve of the integer
program, a new constraint is added to LC preventing any strict superset of the most
recently determined policy from being found in the future. In this way, we ensure
that only legal policies are found. Finally, once all policies are found, the integer
program becomes infeasible and the algorithm returns the set of all policies that
potentially eliminate the user-specified set of action atoms.

In the next section, we provide an extensive application of Algorithms 1–3 to
a large, real-world database representing the actions and operating environment of
Lashkar-e-Taiba, an active terror group in southern Asia.

4 Policy Recommendations and Lashkar-e-Taiba

In this section, we apply the techniques discussed in Sect. 3 to study environments
that provoke attacks by Lashkar-e-Taiba (LeT), a terror group in South Asia.
Over the last two decades, LeT has been responsible for many terrorist attacks in
India, Kashmir, Pakistan, and Afghanistan. In 2006, LeT operative Faheem Lodhi
was arrested and convicted of planning sophisticated attacks on Australia’s power
grid [4], demonstrating the potential global threat of this organization.

We learn a set of tp-rules from real-world data collected by the Computational
Modeling of Terrorism (CMOT) codebook [17], a research project that tracks past
and current activities (recording data at a granularity level of months) of multiple
terrorist groups including LeT. We then determine a set of policies that could help
prevent further attacks by LeT. A far more in-depth discussion of these results in
can be found in [21].

4.1 Experimental Methodology and Learned Rules

The CMOT codebook tracks hundreds of environmental and action variables for
Lashkar-e-Taiba, recording intensity levels on a month-by-month basis. A few
examples of environmental variables include those relating to:
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LeT performs attacks on:Deaths of LeTmember

Government actions against LeT

Internal cohesion of LeT

Desertion by LeTmembers

Release of arrested LeT members by
the government

Relationship with Pakistani
government

Communications campaign waged by
LeT

LeT practices charitable acts

Trials of LeT members

Civilians

Public sites

Security forces

Security installations

Holidays

Government

Attempted attacks

Armed clashes

Fig. 1 A graphical summary of high support, high probability tp-rules learned about Lashkar-e-
Taiba. Solid black lines from an environmental attribute to an action attribute represent a positive
correlation, while dashed blue lines represent negative correlation

• The internal politics and activities of LeT (e.g., “What level of intra-
organizational conflict exists in LeT?”);

• The level of local and international monetary, military, and political support for
LeT (e.g., “At what level is Pakistan’s military supporting LeT?”); and

• Information about the group’s operating facilities and staffing.

Examples of action variables tracked by the CMOT codebook include those
relating to:

• Armed and suicide attacks against military forces, security forces, or civilians;
• Hijackings and abductions/kidnappings; and
• Attacks on military targets, government facilities, tourist sites, or symbolic sites.

We learned tp-rules using all of the action and environmental variables tracked by
the CMOT codebook. These rules were learned automatically using Algorithms 1
and 2. We then filtered these rules to include only those with high support in the
data and probability of occurring. Figure 1 shows a summary of the learned rules.

For example, Fig. 1 states that increases in the environmental variable tracking
the deaths of LeT members is positively correlated with increased attacks on
civilians, while increases in the same environmental attribute is negatively correlated
with increased attacks on public sites. A much more in-depth discussion of the data,
experimental methodology, and set of learned tp-rules can be found in upcoming
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work by Subrahmanian et al. [21]. These results clearly show the expressive power
of tp-rules and the promise of the methods for automatically learning them from
real-world data.

4.2 Policies That Potentially Eliminate or Reduce Violent
Attacks by Lashkar-e-Taiba

Using the filtered tp-rules described above and the policy computation methodology
described in Algorithm 3, we computed a set of policies that potentially eliminate
or reduce violent attacks by Lashkar-e-Taiba. Critically, we are not claiming that
instituting these policies in reality will stop all attacks by LeT; rather, they may be
effective at changing LeT’s behavior. These policies are based on tp-rules forming
a behavioral model of LeT based on past behavior; in reality, terrorist groups
frequently change their behavior in response to counter-terror strategies [8]. In this
light, it is imperative that policies adapt to the changing actions and strategies of
groups like LeT.

The set of tp-rules produced eight policies. The policies were overall quite similar
to one another, varying individually in a subtle ways. We very briefly describe them
now. Overall, each of the policies suggest:

• Targeting LeT’s internal cohesion;
• Targeting the Pakistani military’s support of LeT;
• Targeting LeT’s training facilities;
• Targeting any communication campaigns launched or run by LeT;
• Pushing for the resignation of senior LeT leaders;
• Keeping LeT prisoners (i.e., preventing the release of LeT prisoners by the

governments that hold them);
• Reconsidering targeted efforts and long-term campaigns to kill or arrest LeT3;

and
• Not explicitly encouraging low-level personnel to defect from LeT.

Individual variability amongst the policies was low. Individually, the policies
suggested taking one or some of the following actions (in addition to those listed
above):

• Targeting social and medical services run on the local level by LeT;
• reducing media coverage and publicity of trials of LeT members (especially in

Australia);
• Maintaining or pushing for a government ban by Pakistan on LeT; and

3This is an interesting point. We emphasize that this is not discouraging governments or groups
from working to arrest active LeT members. Rather, explicit campaigns to arrest members can lead
to mixed and sometimes dangerous responses.
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• Disrupting or targeting relationships between LeT and other Islamic organiza-
tions.

Clearly, no one policy offers a simple and deterministic route to preventing
violent attacks by LeT. Furthermore, these policies would need to adjust to the
constantly adapting strategies and actions of the active terror group. As statisticians
George Box and Norman Draper wrote, “essentially, all models are wrong, but some
are useful [3].” It is our hope that the policies presented here will be useful.

5 Conclusions and Directions for Future Research

Many applications require logical reasoning about situations that involve temporal
uncertainty, including predicting movements in the stock market, assessing the
potential future damage of environmental disasters, and reasoning about the be-
havior of terror groups. In this chapter, we overviewed temporal probabilistic logic
programs (TPLPs), through which logic programmers can formally express rules
that have both temporal and probabilistic aspects. We provided a general method to
derive TP rules from databases of categorical and numerical variables based on work
by Subrahmanian and Ernst [20]. We also presented a general method to provide
“good” policy recommendations based on these automatically learned rules. Finally,
we presented recent work that led to a successful, large-scale application of these
techniques to model Lashkar-e-Taiba, an active militant terrorist group.

The framework we described in this chapter automatically finds expressed causal
rules within historical data and presents the end user with a set of suggestions
(e.g., policies in the case of terror groups) based on the rules found in the data.
This framework could easily be adapted to handle different types of temporal
reasoning systems. For instance, a recent extension to temporal probabilistic logic
called annotated probabilistic temporal (APT) logic increases the expressiveness
of tp-rules [18, 19]. Like TP logic, APT logic does not make independence
assumptions; however, it provides bounds on probabilities as opposed to using only
point probabilities. This generality could provide, for example, a more expressive
system for policy recommendations. To our knowledge, systems based on APT logic
have not yet been implemented in the large.

The integer programming-based method for finding desirable policies given a set
of tp-rules can, as we found while doing experiments on the real-world LeT data,
become overconstrained. This is due in part to the fact that real-world groups are
not rational, leading to seemingly contradictory actions which leads to an infeasible
hitting set problem. Expert knowledge could be used to cut out contradictory rules
from a TPLP; however, manual interaction with large sets of tp-rules can be difficult,
and this would be prone to human error and bias. Instead, a policy analyst could
relax the objective function from preventing all rules from firing to discovering the
largest subset of rules that could be prevented from firing. One technique to do this,
again using integer programming, is suggested by Bell et al. [1, 2]. This problem
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is equivalent to the maximum Boolean satisfiability problem (MAX-SAT), is NP-
complete, and could still be solved using an industry-standard integer programming
solver. We suspect a method like this will likely be necessary when dealing with
large sets of tp-rules learned about imperfectly rational groups.
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