Throwing darts: Random sampling helps tree search when the number of short
certificates is moderate

John P. Dickerson and Tuomas Sandholm
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

One typically proves infeasibility in satisfiabil-
ity/constraint satisfaction (or optimality in integer
programming) by constructing a tree certificate.
However, deciding how to branch in the search tree is
hard, and impacts search time drastically. We explore
the power of a simple paradigm, that of throwing
random darts into the assignment space and then using
information gathered by that dart to guide what to
do next. This method seems to work well when the
number of short certificates of infeasibility is moderate,
suggesting the overhead of throwing darts can be
countered by the information gained by these darts.

Throwing Darts

Tree search is the central problem-solving paradigm in arti-
ficial intelligence, constraint satisfaction, satisfiability, and
integer programming. There are two different tasks in tree
search: A) finding a feasible solution (or a good feasible
solution in the case of optimization), and B) proving in-
feasibility (or, if a feasible solution has been found in an
optimization problem, proving that there is no better solu-
tion). These have traditionally been done together in one tree
search. However, a folk wisdom has begun to emerge that
different approaches are appropriate for proving feasibility
and infeasibility. For example, local search can be used for
the former while using a complete tree search for the latter
(e.g., (Kroc et al. 2009)). The two approaches are typically
dovetailed in time—or run in parallel—because one usually
does not know whether the problem is feasible (or, in the
case of optimization, if the best solution found is optimal).

Assigning equal computational resources to both tasks
comes at a multiplicative cost of at most two, and can lead
to significant gains as the best techniques for each of the two
parts can be used unhindered. Sampling-based approaches
have sometimes been used for feasibility proving. In con-
trast, in this paper we explore a new kind of sampling-based
approach can help for proving infeasibility. The techniques
apply both to constraint satisfaction problems and to opti-
mization problems. In the interest of brevity, we will mainly
phrase them in the language of satisfiability.

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One typically proves infeasibility by constructing a tree
certificate, that is, a tree where each path (ordered set of vari-
able assignments) terminates into infeasibility. The ubiqui-
tous way of constructing a tree certificate is tree search; that
is, one grows the tree starting from the root. However, de-
ciding how to branch in tree search is hard (Liberatore 2000;
Ouyang 1998), and the branching choices affect search tree
size by several orders of magnitude.

A strong backdoor of a search problem is a set of vari-
ables that, regardless of truth assignment, give a simplified
problem that can be solved in polynomial time (Williams,
Gomes, and Selman 2003). In DPLL-style satisfiability, a
strong backdoor of an unsatisfiable formula is a set of vari-
ables that, regardless of truth assignment, give a simplified
formula that can be solved using repeated unit propagation.
Discovering a strong backdoor is not easy (Szeider 2005;
Dilkina, Gomes, and Sabharwal 2007); a major motivation
of this work is trying to identify backdoors, leading to better
variable ordering and smaller search trees.

We explore the idea of using random samples of the vari-
able assignment space to guide the construction of a tree cer-
tificate. In its most general form, the idea is to repeatedly 1)
throw a random dart into the allocation space, 2) minimize
that dart, and 3) use it to guide what to do next. Interestingly,
this simple approach appears to decrease average runtime as
well as runtime variance when the number of short tree cer-
tificates proving the infeasibility of a formula is moderate.

Experimental Design

We developed a generator of random unsatisfiable formu-
las that allows easy control over the size and expected num-
ber of strong backdoors. Having such control is important
because a generate-and-test approach to creating instances
with desirable numbers and sizes of strong backdoors would
be intractable. This is due to the facts that finding a back-
door is difficult (Szeider 2005) and, for many desired set-
tings of the two parameters, the common instance genera-
tors extremely rarely create instances with such parameter
values (e.g., pure random 3CNF formulas tend to have large
backdoors—roughly 30% of variables (Interian 2003)).

Our test suite consists of a set of graph coloring problems
that, while originally satisfiable, are tweaked to prevent fea-
sibility. Our generator is a generalized version of that intro-
duced in (Zawadzki and Sandholm 2010). We first ensure

Number of Cliques

86 87 88 89 90 91 92 93 94 95

2
?
g " A./A
Q. | A A~ _ A —— P NS A —A A L —A —n ~
[7,) 1 et N~ ———— =N N — ~ A A —— ~—— N
205
B
© 0
T) o 0O o o 9o n o o o o o O O O o o N O 0O O o0 o0 0 o0 n o O o o o O O O o o N O 0O 0O o0 o0 0 o0 n o O o o

MmO O O < n O O — n n O O NN O O O MmO O O < n O O — 1n n O O NN O O O Mm O O O < n O O

z — O - O O N O n o o — O - O O N 0 O n o o — O - O O

Number of Darts Thrown

Figure 1: Median relative speed of increasing numbers of darts (bottom axis) in each of {86, ...

that a randomly generated connected graph G = (V, E)
is k-colorable. This is done via the canonical transforma-
tion of a graph coloring instance into a SAT instance (see,
e.g., (Van Gelder 2008)), followed by a satisfiability check.
Unsatisfiable instances are discarded so they do not inter-
fere with our control of the size and number of backdoors
discussed next. Then, a number n of (k + 1)-cliques are in-
troduced into the graph, with n proportional to the desired
number of short certificates. While not significantly chang-
ing the structure of the graph, no (k + 1)-clique can be k-
colored and thus this augmented graph cannot be k-colored.
So, the SAT formula is unsatisfiable.

A SAT solver can conclude infeasibility of such formulas
by reasoning only about the variables pertaining to a single
k + 1 vertex clique. In this way, we can control the size (k)
of a short certificate in the propositional formula as well as
the estimated number (n) of short certificates.'

We use the underlying solver (MiniSat (Eén and
Sorensson 2004) in the case of our experiments) to guide the
construction of each dart. Each dart is in effect one search
path from the root to a node where infeasibility of the path
can be detected. The path then constitutes a conflict clause.

For the construction of the path, we use uniform random
variable ordering. (This is only for darts throwing. For the
tree search that follows the dart throwing phase, we let Min-
iSat use its own variable ordering heuristics.) However, we
do employ repeated unit propagation using all the clauses in
the formula, both original and prior minimized darts.

Results

We varied both the cardinality of the formula’s set of short
tree certificates of infeasibility (i.e., number of cliques in
the graph) and the number of darts thrown. Experiments
were performed on these random, unsatisfiable graphs with
|[V| = 100 and |E| = 1000, with the number of colors
k = 10. Translating the augmented unsatisfiable coloring
problem to propositional logic yielded CNF formulas with
900 variables and between 12000 and 35000 clauses, de-
pending on the number of cliques added. For every param-

!The number of short certificates will not necessarily be exactly
n: two randomly placed cliques can overlap in such a way as to
create more than two cliques of the same size, given existing edges
in the graph G. For large enough V' and relatively low numbers of
short certificates, we expect this to be rare and inconsequential.

,95} cliques (top axis).

eter setting, 20 instances were generated, and on each of
them, 20 independent runs of the algorithm were conducted.

We compare the solution times for a darts-based strat-
egy against that of pure MiniSat. We witnessed significant
speedup from darts in the “middle ground” of 80-95 cliques.
We hypothesize that when there are very few short certifi-
cates available, throwing darts will often result in such cer-
tificates being missed. Conversely, when short certificates
are ubiquitous (e.g., coloring a complete graph), DPLL is
likely to find a certificate quickly.

Figure 1 shows the relative speedups across 10 different
experimental settings in this promising range. Values above
1 represent a performance improvement over MiniSat with-
out darts. Regardless of number of cliques, throwing just
250 darts provides, in terms of both mean and median, a
clear decrease in runtime. Runtime monotonically decreases
as we add more darts until between 5000 and 7500 darts. Af-
ter that, the overhead of adding new clauses to the original
propositional formula (and the time spent on throwing and
minimizing the darts themselves) outweighs the benefit of
any information provided by the darts.

Furthermore, speed improvements from darts tend to cor-
relate with large decreases in variance. Our largest runtime
improvements occurred at 2500-7500 darts; in that region
the variance was reduced by over an order of magnitude.
This suggests that throwing just a few thousand darts—with
low computational overhead—seems to cut off the heavy tail
of the runtime distribution, at least on these instances, better
than MiniSat’s tree search, which itself uses random restarts.

Conclusions. These experiments suggest that a simple
dart throwing strategy provides legitimate benefit, both in
terms of runtime and variance in runtime, on formulas with
a “medium” number of short certificates. With too few
short certificates, dart throwing can unluckily miss all of
them, thus providing little new information to the subse-
quent DPLL search. With too many certificates, dart throw-
ing provides redundant information to the tree search, re-
sulting in little speedup. However, on instances in between
these extremes, throwing even a few hundred darts—at al-
most no computational cost—can often result in both a sig-
nificant runtime boost and a significant decrease in runtime
variance. Successful dart throwing adds enough information
to alleviate the variance introduced by the heavy tail of these
runtime distributions.

References

Dilkina, B.; Gomes, C.; and Sabharwal, A. 2007. Trade-
offs in the complexity of backdoor detection. Principles and
Practice of Constraint Programming 256-270.

Eén, N., and S6rensson, N. 2004. An extensible SAT-solver.
In Theory and Applications of Satisfiability Testing, 333—
336. Springer.

Interian, Y. 2003. Backdoor sets for random 3-SAT. Theory
and Applications of Satisfiability Testing 231-238.

Kroc, L.; Sabharwal, A.; Gomes, C.; and Selman, B. 2009.
Integrating systematic and local search paradigms: A new
strategy for MaxSAT. IJCAI

Liberatore, P. 2000. On the complexity of choosing the
branching literal in DPLL. Artificial Intelligence 116(1-
2):315-326.

Ouyang, M. 1998. How good are branching rules in DPLL?
Discrete Applied Mathematics 89(1-3):281-286.

Szeider, S. 2005. Backdoor sets for dll subsolvers. Journal
of Automated Reasoning 35:73-88.

Van Gelder, A. 2008. Another look at graph coloring via
propositional satisfiability. Discrete Applied Mathematics
156(2):230-243.

Williams, R.; Gomes, C.; and Selman, B. 2003. Backdoors
to typical case complexity. In International Joint Conference
on Artifical Intelligence, volume 18, 1173-1178.

Zawadzki, E., and Sandholm, T. 2010. Search tree restruc-
turing. Technical Report CMU-CS-10-102, Carnegie Mel-
lon University. Presented at the INFORMS Annual Confer-
ence, 2010.

