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Abstract

We provide a polynomial-time, scalable algorithm for equi-
librium computation in multi-agent influence games on net-
works, extending work of Bindel, Kleinberg, and Oren (2015)
from the single-agent to the multi-agent setting. In games of
influence, agents have limited advertising budget to influence
the initial predisposition of nodes in some network towards
their products, but the eventual decisions of the nodes are de-
termined by the stationary state of DeGroot opinion dynam-
ics on the network, which takes over after the seeding (Ah-
madinejad et al. 2014, 2015). In multi-agent systems, how
should agents spend their budgets to seed the network to max-
imize their utility in anticipation of other advertising agents
and the network dynamics? We show that Nash equilibria of
this game are pure and (under weak assumptions) unique, and
can be computed in polynomial time; we test our model by
computing equilibria using mirror descent for the two-agent
case on random graphs.

1 Introduction
Opinion formation and spreading dynamics over networks
are important and well-researched topics in sociology, eco-
nomics, probability, and a variety of other applied and the-
oretical fields. They are related to a variety of other prob-
lems on networks, such as the spreading of technologies or
epidemics, and are becoming increasingly important from
a computational standpoint as much of economic activity,
advertising, and political influencing takes place on online
social networks. There is an array of models for how opin-
ions spread over networks, but the basic premise is sim-
ple: at the beginning of time, nodes in the network have
some initial beliefs, reflecting political opinions, affiliation
to groups, technologies that they use, or proclivity to buy dif-
ferent products; from time zero onward, network spreading
dynamics determine how nodes express and update their be-
liefs as a function of their own state and the expressed beliefs
of the other nodes in the network. A long line of work in-
vestigates how different types of belief spaces, state spaces,
expressed beliefs, update rules, and, importantly, the struc-
ture of the network influence the opinion spreading dynam-
ics and its final outcomes; see, e.g. (DeGroot 1974; Fried-
kin and Johnsen 1990; Ellison 1993; Gale and Kariv 2003;
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Kuran and Sandholm 2008; Hagenbach and Koessler 2010;
Jackson 2010; Montanari and Saberi 2010; Acemoglu et al.
2011; Acemoglu and Ozdaglar 2011; Bhawalkar, Gollapudi,
and Munagala 2013; Bindel, Kleinberg, and Oren 2015), but
note that this literature is vast and we cannot do it justice
here.

Clearly, the outcome of the opinion spreading dynamics,
be it a limiting state, a stationary distribution, or a transient
measure over beliefs or expressed beliefs, is intimately re-
lated to the “seeding” of the network’s nodes with initial
beliefs. This naturally suggests an algorithmic challenge.
Given a network, an objective function assigning payoffs to
different configurations of beliefs on the network’s nodes,
and a seeding budget, how should this budget be allocated
to influence the initial beliefs of the nodes so as to maxi-
mize the objective function in the outcome of the opinion
spreading dynamics? This problem has been studied inten-
sively in the literature, leading to efficient algorithms attain-
ing (approximately) optimal solutions under various instan-
tiations of our problem; see e.g. (Kempe, Kleinberg, and Tar-
dos 2003; Chen, Yuan, and Zhang 2010; Gionis, Terzi, and
Tsaparas 2013; Ahmadinejad et al. 2014, 2015).

Of course, many settings involve multiple entities com-
peting for influence in a network. These could be differ-
ent brands selling competing products. They could be dif-
ferent political parties competing for voters. They could be
different social network influencers competing for follow-
ers. Examples abound, suggesting a natural extension of
the afore-described optimization problem to the following
game-theoretic challenges: How should a strategic agent op-
timally spend their budget to seed the network in order to
maximize their final influence, in anticipation of not only
how their seeding will affect the opinion spreading dynamics
but also in anticipation of the strategies of other agents who
are simultaneously seeding the network and may have com-
peting objectives? What are the resulting equilibria? And
how do the optimal strategies depend on the structure of
the network, which nodes are deemed most valuable by the
agents’ objectives, and what the initial beliefs of the nodes
are?

These are the challenges that we target in this paper. We
study multi-agent influence games over networks, using a
natural extension, to multidimensional beliefs, of Friedkin
and Johnsen’s extension (Friedkin and Johnsen 1990) of



the celebrated DeGroot model (DeGroot 1974) of belief-
spreading dynamics, discussed in Section 3. In this model,
there is an underlying (possibly directed) weighted network
G = (V,E,w : E → R≥0), whose nodes i ∈ V are en-
dowed with internal beliefs si,· = (si,k)k∈K ∈ ∆K , where
K is the set of agents and ∆K = {x ∈ RK

≥0 |
∑

k∈K xk =

1}. Vector si,· corresponds to (potentially fractional) affini-
ties of node i to the agents in K in the beginning of time.
Keeping these internal beliefs fixed, the nodes update their
external beliefs (zti,k)i,k according to the following rule, at
every t ∈ N:

∀i, k : zti,k ←
si,k +

∑
(j,i)∈E wj,iz

t−1
j,k

1 +
∑

(j,i)∈E wj,i
, (1)

with the following initialization z0
i,k = si,k, for all i, k. In

particular, given the seeding (si,k)i,k, the update dynamics
defined by (1) decomposes into one Friedkin-Johnsen pro-
cess for each k. This process satisfies that for all nodes i
and times t: zti,· ∈ ∆K , i.e. across all times the fractional
affinities of each node to the different agents in K are non-
negative and sum to 1.

Given the above setup, we now describe how agents in K
compete for influence. We assume that each agent k ∈ K
has a payoff function fk : [0, 1]V → R, mapping external
beliefs z·,k ≡ (zi,k)i to a scalar payoff, and a budget Bk.
They can spread Bk over nodes in V , spending bi,k on every
node i ∈ V . The total amount spent on a node by all agents
alters its internal belief as follows:

si,k ←
si,k + bi,k

1 +
∑

`∈K bi,`
. (2)

We observe that (2) guarantees that si,· remains in ∆K after
the update.

So now we have a multi-agent game. The agents have to
decide how to spend their budgets over nodes in anticipation
of how the other agents will spend their budgets, how the
overall spending on the nodes will influence their internal
beliefs, and how this, in turn, will influence the limiting ex-
ternal beliefs (z∞i,k)i,k evolved according to (1). The goal of
agent k is to maximize fk(z∞·,k), where z∞·,k ≡ (z∞i,k)i.

Our goal is to compute optimal strategies and equilib-
ria in the afore-described family of games. The challenge
is two-fold: (i) The strategy space of each agent k is high-
dimensional and continuous, namely Sk = {(bi,k)i | bi,k ≥
0,∀i, and

∑
i bi,k ≤ Bk}, corresponding to all possible

ways to split budget Bk among the nodes in V ; thus,
randomized strategies correspond to distributions over Sk.
(ii) Even for a given collection of deterministic strategies,
we only have implicit access to the resulting payoffs; in-
deed, we need to determine how these affect the internal
beliefs, compute the resulting limiting external beliefs, and
plug those into the functions (fk)k to see how much payoff
every agent derives. Our main contribution is the following:
Theorem 1.1. If the payoff functions fk are non-decreasing
and convex, and

∑
k fk(z·,k) = 1 for all z = (zi,k)i,k,

i.e. the game is constant-sum, then there exists a pure Nash
equilibrium, which is unique if additionally, for all k, fk is

continuous, strictly increasing and the internal beliefs prior
to budget allocation satisfy si,k 6= 0 for all i. Under non-
decreasing and convex payoff functions fk, if the agents play
the game repeatedly and use no-regret learning dynamics to
update their strategies (meaning that the difference in aver-
age utility obtained by chosen strategies and that obtained
by the best fixed in hindsight strategy vanishes over time),
then the average trajectory of the dynamics converges to a
pure Nash equilibrium. If, additionally, every fk is a linear
function, then a pure Nash equilibrium can be computed in
polynomial-time using convex programming.

We note that the constraints placed by our theorem on
the payoff functions are natural constraints. Indeed, a non-
decreasing fk simply ensures that increased final influence
of agent k on the network does not decrease k’s utility, while
convex, constant-sum payoffs encompass a broad range of
natural games. The constant sum of 1 is not important, of
course, as Nash equilibria are invariant under scaling and
shifting the payoffs. The fact that the game is constant-sum
captures that the agents are competing for fixed resources
in a closed system. It is well-known that non-constant-sum
games are intractable (Daskalakis, Goldberg, and Papadim-
itriou 2008; Chen, Deng, and Teng 2009), so it is natural to
restrict our attention to constant-sum games in order to ob-
tain polynomial-time, scalable algorithms.

Our main technical insight is that, in our setting, the pay-
off of each agent is concave in their own strategy and con-
vex in the strategies of the other agents. Combining this in-
sight with the fact that the game is constant-sum allows us
to write a convex program to compute a Nash equilibrium
using ideas from (Daskalakis and Papadimitriou 2009; Cai
and Daskalakis 2011; Cai et al. 2016). Finally, we show that
our game is a socially-concave game, which implies that no-
regret learning converges to equilibrium (Even-Dar, Man-
sour, and Nadav 2009).

We apply these insights to compute optimal strategies in
a two-player case of the multi-agent game. We show that
in the two-player case, where the game becomes a convex-
concave saddle-point problem, equilibrium strategies can be
computed using the mirror-descent algorithm (Bubeck 2014;
Nemirovsky and Yudin 1983). We implement and validate
this approach on families of random graphs.

Additional Related Work. We have already provided
some historical and modern references on opinion spread-
ing and learning dynamics on networks, as well as relevant
references on single-agent influence maximization. Work on
the multi-agent front has been sparser, due to the significant
difficulty of computing equilibria in this high-dimensional
setting. We discuss this work here. (Alon et al. 2010) initi-
ated the multiagent network diffusion problem where agents
directly influence nodes. This was followed by a number of
additional works (Garimella et al. 2017; Maehara, Yabe, and
Kawarabayashi 2015; Tzoumas, Amanatidis, and Markakis
2012), however (Alon et al. 2010)’s initial diffusion model is
the most comparable to this work. They introduce a graph-
based multi-agent game that is strikingly similar to (yet no-
tably distinct from) our model. In their model, each agent



corresponds to a color, and they can select one node each
to assign to their color. From there, the colors diffuse in the
following manner: an uncolored vertex is colored k if all of
its neighbors are either colored k or uncolored and at least
one is colored k, and an uncolored vertex is eliminated if at
least two of its neighbors have different colors. They showed
that a Nash equilibrium exists and can be found efficiently
on all graphs with diameter at most two, however there ex-
ists a graph with diameter three which yields no Nash equi-
librium. (Alon et al. 2010)’s model can almost be thought
of as a simplified and discretized version of our multi-agent
extension of the DeGroot model: internal beliefs all start as
zero, color assignments correspond to external beliefs and
may only have binary values, and nodes with multiple in-
fluences are simply ignored. Conversely, our model can be
thought of as a more continuous extension of the (Alon et al.
2010) model, except for subtle differences in the diffusion
process.

2 Preliminaries & our Multi-agent Influence
Games

Notation. For convenience, we may denote a matrix
(ai,k)i,k by a·,· or by boldface a. For a given i, we will de-
note by ai,· the i-th row of a, and, for a given k, we will
denote by a·,k its k-th column. As is common in game the-
ory, if b1, . . . , bK are strategies of K players in a game, we
denote by b−i the strategies of all players but player i, and
by (bi ; b−i) the strategies of all players.

Single-agent Games of Influence
A Single-Agent Influence Process. As a basis for our
research, we use (Friedkin and Johnsen 1990)’s extension
of (DeGroot 1974)’s model for influence networks. In this
model, we consider the spread of a single belief across a
graph of nodes via a Friedkin-Johnsen process. This model
is formally defined as follows:
Definition 2.1. A single-agent Friedkin-Johnsen influence
spreading process takes as input: a (possibly directed) graph
G = (V,E,w : E → R≥0) of nodes; and for every node
i ∈ V , an “internal belief” si ∈ [0, 1]. Then for every node
i ∈ V , it sets the node’s initial “external belief” to z0

i = si,
and updates the nodes’ external beliefs over a series of steps
t ∈ N as follows:

zti ←
si +

∑
j wj,iz

t−1
j

1 +
∑

j wj,i
.

Notably, (Bindel, Kleinberg, and Oren 2015) showed that
this process converges: there exists some vector of limiting
external beliefs z∞ = limt→∞(zti)i.

A useful tool for analyzing and solving problems in
this model is called the influence matrix, which is defined
using a Laplacian L of the input graph G. To start, define
the matrix Mi,i = 1 +

∑
j∈N(i) wj,i, Mi,j = −wj,i for

j ∈ N(i), and Mi,j = 0 for j /∈ N(i), where N(i) are the
in-neighbors of i. In other words, M = L + I , where L is
a Laplacian of the graph. Let A = M−1T . (Ahmadinejad

et al. 2014) showed that the vector z∞ of equilibrium
external beliefs and the vector s of internal beliefs satisfies:
z∞T = sT · A. Therefore, Aij measures to what extent the
internal belief si impacts the equilibrium external belief
z∞j . Thus, we call A the influence matrix.
Lemma 2.1. In the single-agent Friedkin-Johnsen network
process, the influence matrix A is strictly increasing on
[0, 1]|V | (i.e. for vectors s, s′ ∈ ∆|V | such that si ≥ s′i,
for all i, and sj > s′j , for some j, it holds that (sTA)i ≥
(s′TA)i, for all i, and (sTA)j > (s′TA)j).

Proof. Suppose that s, s′ ∈ [0, 1]|V | such that si ≥ s′i for
all i and sj > s′j for some j. By definition, s and s′ are
both valid internal belief vectors for the Friedkin-Johnsen
process. It follows that, with those internal belief vectors,
the process has limiting external belief vectors z∞T = sTA

and z′∞
T

= s′TA respectively. Hence, to show the desired
property, it is sufficient to show that the property is satis-
fied, at all timesteps t, by zt and z′t, which are the external
beliefs maintained by the Friedkin-Johnsen process with in-
ternal beliefs s and s′ respectively. That is, we will show
that, for all t, zti ≥ z′ti , for all i, and ztj > z′tj . We will
use induction. The property is clearly true at t = 0 since
z0 = s and z′0 = s′. Note that, by the update formula of
the Friedkin-Johnson process, zti is (strictly) monotone in-
creasing in si and monotone non-decreasing with respect to
all zt−1

` . Since, by our induction hypothesis, zt−1
` ≥ z′

t−1
`

for all `, it follows that: zti ≥ z′
t
i, for all i, and ztj > z′

t
j ,

because sj > s′j .

We will later show that the influence matrix and its prop-
erties extend to our multi-agent model.

A Single-Agent Influence Game. So far, we have only
discussed a process wherein the involved actors are nodes,
and their actions define the belief diffusion process. This pa-
per, however, is more concerned with games of influence.
(Ahmadinejad et al. 2015) introduce and analyze a number
of optimization problems, wherein a single agent optimizes
how to seed the network to spread an idea. Specifically, they
consider an instance of Definition 2.1 and add an external
agent who chooses an influencing strategy (bi)i, which im-
pacts the nodes’ internal beliefs as si ← si + bi before the
game starts. The goal of the agent is to optimize some objec-
tive. In many problems they consider, the objective as some
function over the external beliefs of the nodes at equilibrium,
and the influencing strategy is constrained to some budget
B where

∑
i bi ≤ B. This idea will serve as a single-agent

basis for our multi-agent optimization problem in the next
section.

Multi-agent Games of Influence
The Multi-Agent Influence Process. Our multi-agent
games of influence are defined in terms of a natural multi-
agent analogue of the Friedkin-Johnsen influence spreading
process of Definition 2.1. In this process, the nodes of a net-
work have internal and external beliefs over a set of agents
K.



Definition 2.2. A multi-agent Friedkin-Johnsen influence
spreading process takes as input:

1. a (possibly directed) graph G = (V,E,w : E → R≥0) of
nodes;

2. a set of agents K; and
3. for every node i ∈ V an “internal belief vector” si,· ≡

(si,k)k ∈ ∆K , where ∆K = {x ∈ RK
≥0|
∑

k∈K xk = 1};
in particular si,k ∈ [0, 1] is the internal belief of node i in
agent k.

Every node i ∈ V initializes their “external belief vector”
as follows z0

i,· = si,·, and over a sequence of steps the
nodes update their external belief vectors according to the
Friedkin-Johnsen process:

zti,k ←
si,k +

∑
j wj,iz

t−1
j,k

1 +
∑

j wj,i
.

A nice property of the multi-agent Friedkin-Johnsen pro-
cess is that external belief vectors remain in the simplex in
the course of the dynamics, as stated in the following simple
lemma.

Lemma 2.2. For each i, at any timestep t, zti,· ≡ (zti,k)k ∈
∆K .

Proof. To prove this, we simply need to show that, for all
t:
∑

k z
t
i,k ≤ 1 for all i, as all external beliefs remain non-

negative in the course of the dynamics, because of the non-
negativity of the weights. We show this by induction. The
property is clearly true before influence spreading starts,
i.e. t = 0, since for each i,

∑
k z

0
i,k =

∑
k si,k ≤ 1. We

now show the inductive step. At time t, and for some node i:∑
k

zti,k =
∑
k

si,k +
∑

j wj,iz
t−1
j,k

1 +
∑

j wj,i

=

∑
k si,k +

∑
j(
∑

k z
t−1
j,k )wj,i

1 +
∑

j wj,i

≤
1 +

∑
j wj,i

1 +
∑

j wj,i
= 1,

where we used the inductive hypothesis (that for all j:∑
k z

t−1
j,k ≤ 1) to get the inequality. So the claimed prop-

erty is preserved at each step.

It is easy to see that, once the internal beliefs and exter-
nal beliefs are initialized, the multi-agent Friedkin-Johnsen
influence spreading process decomposes into |K| indepen-
dent copies of the single-agent Friedkin-Johnsen influence
spreading process. It thus follows from the properties of
the single-agent process, discussed in Section 2, that for all
k ∈ K there is a limiting vector of external beliefs in agent
k, z∞·,k = limt→∞ zt·,k, which is linked to the vector of inter-
nal beliefs in agent k as follows: z∞·,k

T = sT·,kA, where A is
the influence matrix defined in Section 2.

The Multi-Agent Influence Game. We define multi-agent
influence games by allowing the agents in K to modify the

internal beliefs of the nodes of the network, before the net-
work influence process begins, in order to achieve some
goal. What is left to define is: (1) how agents modify the
internal beliefs of the nodes and with what limitations, and
(2) what an agent’s metric for success is.

(1) We assume that each agent k ∈ K is given some
budget Bk > 0 and is allowed to allocate some portion
bi,k ≥ 0 of that budget to influence each i ∈ V , subject
to
∑

i bi,k ≤ Bk. Recall that in our single-agent influence
game of Section 2, we assumed that the impact to the inter-
nal belief of a node of the agent’s budget allocation to that
node was additive (i.e. si ← si + bi). However, in a multi-
agent game, the impact of any one agent’s budget allocation
on some node i will be reduced as other agents allocate bud-
get to i. To keep internal beliefs normalized, we assume that
the impact of budget allocation to the nodes’ internal beliefs
is determined by the following update rule:

∀i, k : z0
i,k(b) = spost

i,k ←
spre
i,k + bi,k

1 +
∑

`∈K bi,`
.

Notice, in particular, that if the internal belief vector of node
i lies in ∆K before the agents allocate budget to that node,
then the above update guarantees that the internal belief vec-
tor will still lie in ∆K post budget allocation as well.

(2) After agents allocate their budgets, and the internal be-
lief vectors of the nodes are updated, a multi-agent Friedkin-
Johnsen process is executed, resulting in some limiting be-
liefs z∞·,k for each k. The goal of each agent k is to optimize
fk(z∞·,k), given some function fk : [0, 1]V → R.

We note here that a single-player version of this game
does not reduce to the optimization problems defined by
(Ahmadinejad et al. 2015), although it is conceptually simi-
lar and the influence-spreading dynamics are the same.

3 Scalable Solution Methods for Multi-agent
Games of Influence

The most natural questions to address in competitive diffu-
sion models are whether or not a Nash equilibrium exists
and, if it exists, whether it is unique and whether it can be
found efficiently. In this section, we address these by dis-
cussing and proving Theorem 1.1. The results of this sec-
tion are three-fold. First, we show that if each fk is non-
decreasing and convex and the game is constant sum (for-
mally:

∑
k fk(z·,k) = 1), then a Nash equilibrium must

exist, indeed a pure Nash equilibrium must exist. Second,
we show that for these games, agents can employ no-regret
learning dynamics to update their strategies to converge to a
pure Nash equilibrium. Finally, we formulate a convex pro-
gram whose purpose is two-fold: first, we use it to establish
the uniqueness of pure Nash equilibrium when the fk’s are
strictly increasing, convex and continuous and prior to bud-
get allocation all nodes of the network allocate non-trivial
internal belief to each agent; second, we use it to show that
a pure Nash equilibrium can be computed efficiently using
convex programming, in the natural class of non-decreasing
linear fk’s. We prove Theorem 1.1, after we establish two
auxiliary lemmas:



Lemma 3.1. In the setting of Theorem 1.1, if for some agent
k the function fk is non-decreasing and convex then the util-
ity of agent k is a convex function of the strategy of each
other agent k′, as well as the joint strategy vector of all other
agents. If fk is strictly increasing and convex and spre

i,k 6= 0
for all i, then the utility of agent k is strictly convex in the
strategy of each other k′, as well as the joint strategy vector
of all other agents.

Proof. First, we note that the initial belief z0
i,k =

sprei,k +bi,k

1+
∑

` bi,`

of node i in agent k is convex in bi,k′ for k′ 6= k, since as
a function of bi,k′ it takes the form a

a′+bi,k′
for some non-

negative a and positive a′. It is strictly convex if spre
i,k 6= 0.

Hence, each coordinate of the vector of initial be-
liefs z0

·,k(b) is convex in b·,k′ . In particular, if we use
(b′i,k′ ; bi,−k′) to represent the vector bi,· with bi,k′ replaced
by b′i,k′ , then ∀b·,−k′ ,∀λ ∈ [0, 1],∀i,∀b·,k′∀b′·,k′ ,

z0
i,k

(
λbi,k′ + (1− λ)b′i,k′ ; bi,−k′

)
≤ λz0

i,k(bi,·) + (1− λ)z0
i,k(b′i,k′ ; bi,−k′),

and the inequality is strict if spre
i,k 6= 0 and bi,k′ 6= b′i,k′ .

By Lemma 2.1, namely because A is a strictly increasing
matrix, it holds that ∀b·,−k′ ,∀λ ∈ [0, 1],∀i,∀b·,k′ ,∀b′·,k′ :(

AT z0
·,k
(
(λb·,k′ + (1− λ)b′·,k′ ; b·,−k′

))
i

≤ (AT (λz0
·,k(b) + (1− λ)z0

·,k(b′·,k′ ;b·,−k′)))i,

and the inequality is strict if spre
i,k 6= 0 and bi,k′ 6= b′i,k′ .

Since the utility function fk is increasing,

fk
(
AT z0

·,k
(
λb·,k′ + (1− λ)b′·,k′ ; b·,−k′

))
≤ fk(λAT z0

·,k(b) + (1− λ)AT z0
·,k(b′·,k′ ;b·,−k′)),

and the inequality is strict if fk is strictly increasing, spre
i,k 6=

0, for all i, and b·,k′ 6= b′·,k′ .
Finally, if we apply the fact that fk is a convex function

of its inputs to the right hand side, we get that

fk
(
AT z0

·,k
(
λb·,k′ + (1− λ)b′·,k′ ; b·,−k′

))
≤ λfk(AT z0

·,k(b)) + (1− λ)fk(AT z0
·,k(b′·,k′ ;b·,−k′)),

and the inequality is strict if fk is strictly increasing, spre
i,k 6=

0, for all i, and b·,k′ 6= b′·,k′ .
That is, the utility of agent k is a convex function of the

strategy of k′, as claimed, and it is strictly convex if fk is
strictly increasing and spre

i,k 6= 0, for all i. Since the strategies
of the other agents appear additively in the utility of agent k,
we can use the same proof to show convexity/strict convexity
of the utility of k to the joint strategy vector of all other
agents.

Lemma 3.2. In the setting of Theorem 1.1, if for some agent
k the function fk is non-decreasing and linear, then the util-
ity of agent k is a concave function of the strategy of agent
k.

Proof. First, we note that the initial belief z0
i,k =

sprei,k +bi,k

1+
∑

` bi,`

of node i in agent k is concave in bi,k, since as a function of
bi,k it takes the form 1− a

a′+bi,k
for a ≥ 0 and a′ > 0.

Hence each coordinate of the vector z0
·,k(b) of initial be-

liefs in k is concave in b·,k. Namely, for all λ ∈ [0, 1], for
any pair of strategies b·,k,b′·,k of agent k, and any strategies
b·,−k of the other agents, we have that for all i:

z0
i,k

(
λb·,k + (1− λ)b′·,k;b·,−k

)
≥ λz0

i,k(b) + (1− λ)z0
i,k(b′·,k;b·,−k).

By Lemma 2.1, since A is a monotone increasing matrix, all
coordinates of the vector of beliefs in k at t = ∞, which
takes the form AT z0

·,k(b), are also concave in b·,k, i.e. for
all i:(

AT
(
z0
·,k
(
λb·,k + (1− λ)b′·,k;b·,−k

)))
i

≥ (λAT z0
·,k(b) + (1− λ)AT z0

·,k(b′·,k;b·,−k))i.

Since fk is non-decreasing,

fk
(
AT
(
z0
·,k
(
λb·,k + (1− λ)b′·,k;b·,−k

)))
≥ fk(λAT z0

·,k(b) + (1− λ)AT z0
·,k(b′·,k;b·,−k)).

Finally, if we apply the fact that fk is a linear function
of its inputs to the right hand side, we get that the utility of
agent k is a concave function of the strategy of k, as claimed.

Proof. (of Theorem 1.1)
First, we prove that if the fk’s are nondecreasing convex

functions and the game is constant-sum, then the game is
socially concave, that is, that

1. there exists a strict convex combination of the agents’ util-
ity functions which is a concave function of the agents’
strategies; and

2. the utility of each agent k is a convex function of the
strategies of all other agents.
Lemma 3.1 proves the second condition. For the

first condition, we use that the game is constant-sum,
i.e.
∑

k fk(z·,k) = 1, and 1 is a concave function.
As shown by Even-Dar, Mansour, and Nadav (Even-Dar,

Mansour, and Nadav 2009), a socially concave game has
a pure Nash equilibrium, and if agents play the game re-
peatedly and use no-regret learning dynamics to update their
strategies, then the average trajectory of the dynamics con-
verges to a pure Nash equilibrium.

Next, we state a convex program to which the pure Nash
equilibria are optimal solutions. We will use the convex pro-
gram to achieve two goals:

(a) argue that there is a unique pure Nash equilibrium if, for
all k, the utility function fk is strictly increasing, convex
and continuous, and spre

i,k 6= 0, for all i;

(b) argue that the convex program can be solved in polyno-
mial time to compute a pure Nash equilibrium, if each
utility function is non-decreasing and linear.



The variables of our convex program are b = (b·,k)k, the
collection of agent strategies, and ω = (ωk)k, a collection
of scalars. For intuition ωk will be an upper bound to the
best response payoff of agent k to the strategies of the other
agents. At the optimum of the convex program, it will be
equal to the payoff of agent k. Our convex program is the
following:

minb,ω

∑
k ωk subject to:

1. ∀i, ∀k: bi,k ≥ 0

2. ∀k: ||b·,k||1 ≤ Bk

3. ∀k,∀b′·,k ≥ 0 s.t. ||b′·,k||1 ≤ Bk:
ωk ≥ fk(z∞·,k(b′·,k;b·,−k)).

We argue that this is indeed a convex program: the first
two conditions clearly define convex spaces; for the third,
we need to check that if λ ∈ [0, 1] and we have two points
in a space defined by a constraint of the third type, say
ωk ≥ fk(z∞·,k(b′·,k;b·,−k)) and w′′k ≥ fk(z∞·,k(b′·,k;b′′·,−k))

for some k and b′·,k, then λωk + (1 − λ)w′′k ≥
fk(z∞·,k(b′·,k;λb·,−k + (1 − λ)b′′·,−k)). But by Lemma 3.1
(notice that the proof of the lemma implies that the utility of
agent k is jointly convex in the strategies of the other agents)
it follows that: fk(z∞·,k(b′·,k;λb·,−k + (1 − λ)b′′·,−k)) ≤
λfk(z∞·,k(b′·,k;b·,−k)) + (1 − λ)fk(z∞·,k(b′·,k;b′′·,−k)) ≤
λωk + (1− λ)ω′′k , as desired.

Now let us argue that if (b, ω) is an optimum of the pro-
gram then b is a pure Nash equilibrium. We first argue that
the optimum of the program has objective value at most 1.
Indeed, as we have argued a pure Nash equilibrium exists.
Say that b is a pure Nash equilibrium. This means that,
under strategies b, no agent can increase their utility by
changing strategies, i.e. for all k, and for all valid strate-
gies b′·,k: fk(z∞·,k(b)) ≥ fk(z∞·,k(b′·,k;b·,−k)). Thus setting
ωk = fk(z∞·,k(b)) attains an objective value of

∑
k ωk =∑

k fk(z∞·,k(b)) = 1.
Now let us pick an optimal solution (b, ω) to our convex

program. If b is not a Nash equilibrium, then some agent k
can increase its utility by changing strategies. Hence, there is
some k and some valid strategy b′·,k such that fk(z∞·,k(b)) <

fk(z∞·,k(b′·,k;b·,−k)) ≤ ωk. For all other k′, fk′(z∞·,k′(b)) ≤
ωk′ . Adding these up gives 1 =

∑
k fk(z∞·,k(b)) <

∑
k ωk,

so this cannot be a solution to the program, as its objective
value is larger than 1. Thus, any solution to the program must
be a pure Nash equilibrium, as claimed.

So we have written a convex program, and have argued
that its optimal solutions are pure Nash equilibria. Next we
want to argue properties (a) and (b), as promised above.

(a) Uniqueness: Suppose that, for all k, fk is strictly in-
creasing and spre

i,k 6= 0, for all i. We have already shown that
an optimum (b, ω) of the convex program gives a pure Nash
equilibrium (if we drop the ω part) and a pure Nash equilib-
rium b can be associated with some ω so that (b, ω) is an
optimum of the convex program. Thus, to argue uniqueness
of pure Nash equilibrium, it is sufficient to show that the
convex program does not have two optimal solutions (b, ω)
and (b′′, ω′′) such that b 6= b′′. Towards proving a contra-
diction, suppose that it does.

By convexity of the program, (b′′′, ω′′′) := ( 1
2b +

1
2b
′′, 1

2ω+ 1
2ω
′′) must also be an optimal solution. Pick some

k∗ such that b·,−k∗ 6= b′′·,−k∗ . Because fk∗ is strictly in-
creasing and spre

i,k∗ 6= 0, for all i, it follows from the proof
of Lemma 3.1 that the utility of agent k∗ is jointly strictly
convex in the strategies of the other agents. Thus,

∀b′·,k∗ ≥ 0 s.t. ||b′·,k∗ ||1 ≤ Bk∗ : (3)

fk∗
(
z∞·,k∗

(
b′·,k∗ ;b

′′′
·,−k∗

))
≡ fk∗

(
z∞·,k∗

(
b′·,k∗ ;

1

2
b·,−k∗+

1

2
b′′·,−k∗

))
<

1

2
fk∗(z

∞
·,k∗(b

′
·,k∗ ;b·,−k∗))+

1

2
fk∗(z

∞
·,k∗(b

′
·,k∗ ;b

′′
·,−k∗))

≤ 1

2
ωk∗+

1

2
ω′′k∗ = ω′′′k∗ , (4)

where the first (strict) inequality follows from the strict con-
vexity of the utility of agent k∗ in the strategies of the other
agents and the fact that b·,−k∗ 6= b′′·,−k∗ , and the second in-
equality follows from the fact that (b, ω) and (b′′, ω′′) are
feasible solutions of the convex program.

Observe, however, that (4) contradicts the optimality of
(b′′′, ω′′′), since the fact that these inequalities are strict im-
plies that ω′′′k∗ can be pushed lower to improve the objective
function without violating these inequalities. (Formally, we
use compactness and continuity of fk∗ to argue that at least
one of these inequalities should have been tight at an optimal
solution.)

(b) Computational Efficiency: To argue that the convex
program can be solved in polynomial time when the fk’s are
linear non-decreasing, it suffices to show that there exists a
separation oracle that, given ω and b, either finds a violated
constraint or verifies that none exists. Checking that ∀i∀k,
bi,k ≥ 0 and ∀k, ||b·,k|| ≤ Bk is trivial. So, fix k, and we
need to check whether ∀b′·,k, ωk ≥ fk(z∞·,k(b′·,k;b·,−k)).
Since by assumption fk is linear, it follows by Lemma 3.2
that fk(z∞·,k(b′·,k;b·,−k)) is concave in b′·,k, so we can check
the constraint by maximizing w.r.t. b′·,k.

To conclude, we showed that for a broad range of multi-
agent influence games, a pure Nash equilibrium exists and
can be found using no-regret learning. Additionally, for the
natural set of games with linear payoffs, a Nash equilibrium
can be found efficiently through convex programming.

4 Case Study: Two-agent Games of Influence
As a case study, we apply the competitive diffusion model
in a setting where there are two agents trying to spread in-
fluence. Our game then becomes a concave-convex max-min
problem, and we can use standard algorithms to approximate
the saddle point.

Solution via Mirror Descent
In the two-agent case, because our game is constant-sum, we
can simply assume that the first agent is trying to maximize
their utility while the second agent is trying to minimize it.



Figure 1: Top plots show percent change (from uniform strategy) of budgets at equilibrium; nodes are sorted by their component
of the second eigenvector of the adjacency matrix, reflecting graph structure. The bottom panel illustrates the convergence rate
of the equilibrium computation algorithm. Red and blue nodes are highlighted with dots. From left to right: a Barabasi-Albert
graph of 1000 nodes and degree parameter 3, a Barabasi-Albert graph with 10000 nodes and degree parameter 3, and a Watts-
Strogatz graph with 1000 nodes, initial degree 3, and rewiring probability 0.2.

The two-agent game is therefore a saddle-point problem (af-
ter rescaling budgets to lie on the simplex):

max
b·,1∈∆n

min
b·,2∈∆n

(
si,1 +B1bi,1

1 +B1bi,1 +B2bi,2

)T

i∈V
Ac

where c is the vector representation of the payoff function
(i.e. f(z) = zT c). By Lemma 3.2, the objective of this prob-
lem is concave in b·,1; by Lemma 3.1 it is convex in b·,2.

The gradients of the objective function are:

∇b·,1f(b·,1,b·,2) = B1

(
1 +B2bi,2 − si,1

(1 +B1bi,1 +B2bi,2)2

)
i∈V
�Ac

∇b·,2f(b·,1,b·,2) = −B2

(
B1bi,1 + si,1

(1 +B1bi,1 +B2bi,2)2

)
i∈V
�Ac

Then it becomes straightforward to use the classic mir-
ror descent approach (Nemirovsky and Yudin 1983; Bubeck
2014) with mirror map Φ(x) =

∑
i xi log xi, ∇Φ(x) =

1 + log x, which is equivalent to exponentiated gradient de-
scent (Kivinen and Warmuth 1997) or multiplicative weight
updates (Freund and Schapire 1997).

Results on Random Graphs
We experiment with computing equilibrium strategies on
a number of random graphs from the Barabasi-Albert
and Watts-Strogatz families (as implemented in NetworkX)
(Watts and Strogatz 1998; Barabási and Albert 1999), with
incoming edge weights set to 1/(deg(v) + 1). We treat blue
and red as max and min agents respectively. Blue nodes have
initial opinions s which are 0.9 favorable to blue, red nodes
0.1 favorable to blue, and all others 0.5 favorable to blue.

We run all experiments for 10,000 iterations with a step size
of 3× 10−4.

Figure 1 shows equilibrium budget allocations for several
random graphs, where the blue budget (the constraint B on
strategies b) is 10% of the |V | nodes and the red budget is
50%. We randomly assign 10% of nodes to be favorable to
red or blue. The solutions converge quite quickly to equilib-
rium, and the chosen budgets reflect graph structure to some
extent as well as initial opinions of the nodes. Plots from ad-
ditional experiments on a range of parameters are included
in the technical appendix.

5 Conclusions & Future Research
We provide a model of multi-agent games of influence on
networks, which admits scalable, polynomial-time computa-
tion of Nash equilibria, unlike many other models of multi-
agent influence maximization. Additionally, our game is so-
cially concave, implying that these Nash equilibria are pure,
and we also show that under very weak additional condi-
tions, they are unique. By instantiating the game as a saddle
point problem, we test our algorithm for the two-player case
on a number of random graphs.

Our game is closely related to well-studied models of in-
fluence spreading on social networks, and it has many com-
putational advantages over other models of competitive dif-
fusion. Work remains to be done, however, on seeing how
real-world social phenomena may be similar to or different
from the behaviors of nodes and players under our model.
In particular, because our model results in a game that is so-
cially concave, mirror-descent-based approaches such as the
one we presented in Section 4 could potentially be applica-
ble to general multi-agent setting in practice; as motivated



by our general multi-agent theory, this setting is applicable
to a broad swath of real-world settings.

Broader Impact
Diffusion processes in real-world networks are myriad, in-
cluding: contagion or disease spread based on an under-
lying sociobehavioral and geospatial network, the spread
of malware in computer networks, and the spread of
(mis)information in social networks. In turn, one or more
agents may be interested in manipulating that process. As
with many research directions, we see both potential posi-
tive and negative impacts of the work.

Take the spread of (mis)information in social networks
such as Twitter, Facebook, and Sina Weibo. Here, a user
may share a news article—a form of expressing a belief
publicly—that they find interesting—a function of their in-
ternal beliefs. That news article may influence the internal
beliefs of the direct connections of the initial user; those in-
fluenced users then may choose to share or not share to their
local neighborhood—again, a form of expressing their be-
liefs publicly—and the process continues. It may be that one
or more agents (e.g., state actors, advertisers) would benefit
from greater spread of particular types of associated news.
Other actors including news organizations, competing ad-
vertisers, or recently even the platforms themselves may be
interested in limiting the diffusion of that same news, or
maximizing the diffusion of a correction or opposing evi-
dence. Our work could potentially lead to greater ability for
an agent to push a particular message, and could simultane-
ously lead to a greater ability for an agent to defend against
that same message. Herein lies the potential for both positive
and negative impacts.

Additionally, advertising or competitive influence diffu-
sion is a feature of many political and military conflicts. As
with other applications described above, the social benefit
or disadvantage associated with our model depends on the
content of the belief or influence it is being used to spread.
Some agents in conflict seek to influence opinions by provid-
ing public services or building infrastructure. Others spread
propaganda messages intended to incite participation in vio-
lence or influence public approval of violence.

The ongoing COVID-19 public health crisis presents a
third important situation where various agents are interested
in influencing nodes to adopt certain beliefs—and more im-
portantly, behaviors that follow from those beliefs—about
the crisis. Governments and others trying to spread accu-
rate public health information and scientifically sound be-
havioral guidelines always operate with limited budgets and
without the ability to directly “advertise” important infor-
mation to every node. At the same time, we see in the ongo-
ing crisis that other agents (with similarly limited budgets)
are interested in propagating inaccurate information and un-
founded behavioral guidelines across the same networks.
For networks with different initial conditions with respect
to trust in/influence of government, different resource levels
for relevant agents, and different underlying structures, our
model has the potential to create positive impacts by helping
agents identify advertising strategies that propagate accurate

information and good behavioral influences as far as possi-
ble given limited budgets. Of course, information about opti-
mal advertising distribution could also help those interested
in spreading bad behavioral influences.

These are three real-world instantiations of the same un-
derlying mathematical model, all of which could potentially
be captured by our work. Any action taken at the agent level
in each of these scenarios would be a morally-laden deci-
sion. Because our model facilitates efficient allocation of in-
fluencing resources in competitive settings, our work in the-
ory benefits agents who use it, and disadvantages whoever
they are competing against. If the weaker agent in some hy-
pothetical competition uses our model and the stronger agent
does not, our work has the effect of reducing power dispar-
ities. If the stronger agent uses the model, our work has the
effect of amplifying power disparities.

Because our work might increase power disparities in
competitive settings where only the “stronger” agent uses
the model, it is important to point out the steps we have taken
to make our work accessible and implementable for agents
with relatively lower resources. First, our work can be im-
plemented using only open source tools, and relies mainly
on well-known Python libraries like the NumPy stack and
NetworkX. Second, equilibrium strategies can be computed
without specialized hardware—the experiments in this pa-
per were run on a laptop. The major remaining impediment
to equitable access to our work is access to the raw inputs:
appropriately structured network data for which equilibrium
strategies can be computed.
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